CHAPTER 17 EQUILIBRIUM: THE EXTENT OF CHEMICAL REACTIONS

FOLLOW-UP PROBLEMS

17.1A Plan: First, balance the equations and then write the reaction quotient. Products appear in the numerator of the reaction quotient and reactants appear in the denominator; coefficients in the balanced reaction become exponents.
Solution:
a) Balanced equation: $4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \leftrightarrows 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)$

Reaction quotient: $Q_{\mathrm{c}}=\frac{[\mathrm{NO}]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}}{\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{5}}$
b) Balanced equation: $2 \mathrm{NO}_{2}(g)+7 \mathrm{H}_{2}(g) \leftrightarrows 2 \mathrm{NH}_{3}(g)+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Reaction quotient: $Q_{\mathrm{c}}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{NO}_{2}\right]^{2}\left[\mathrm{H}_{2}\right]^{7}}$
c) Balanced equation: $2 \mathrm{KClO}_{3}(s) \leftrightarrows 2 \mathrm{KCl}(\mathrm{s})+3 \mathrm{O}_{2}(g)$

Reaction quotient: $Q_{\mathrm{c}}=\left[\mathrm{O}_{2}\right]^{3}$
17.1B Plan: First, balance the equations and then write the reaction quotient. Products appear in the numerator of the reaction quotient and reactants appear in the denominator; coefficients in the balanced reaction become exponents.
Solution:
a) Balanced equation: $\mathrm{CH}_{4}(g)+\mathrm{CO}_{2}(g) \leftrightarrows 2 \mathrm{CO}(g)+2 \mathrm{H}_{2}(g)$

Reaction quotient: $Q_{\mathrm{c}}=\frac{\left[\mathrm{CO}^{2}\left[\mathrm{H}_{2}\right]^{2}\right.}{\left[\mathrm{CH}_{4}\right]\left[\mathrm{CO}_{2}\right]}$
b) Balanced equation: $2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{SO}_{2}(g) \leftrightarrows \quad 2 \mathrm{~S}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(g)$

Reaction quotient: $Q_{\mathrm{c}}=\frac{\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}{\left[\mathrm{H}_{2} \mathrm{~S}\right]^{2}\left[\mathrm{SO}_{2}\right]}$
c) Balanced equation: $\mathrm{HCN}(a q)+\mathrm{NaOH}(a q)(s) \leftrightarrows \mathrm{NaCN}(a q)+\mathrm{H}_{2} \mathrm{O}(l)$

Reaction quotient: $Q_{\mathrm{c}}=\frac{[\mathrm{NaCN}]}{[\mathrm{HCN}][\mathrm{NaOH}]}$
17.2A Plan: Add the individual steps to find the overall equation, canceling substances that appear on both sides of the equation. Write the reaction quotient for each step and the overall equation. Multiply the reaction quotients for each step and cancel terms to obtain the overall reaction quotient.
Solution:
(1)
(2)

$$
\begin{gathered}
\mathrm{Br}_{2}(g) \leftrightarrows 2 \mathrm{Br}(g) \\
\mathrm{Br}(g)+\mathrm{H}_{2}(g) \leftrightarrows \operatorname{HBr}(g)+\mathrm{H}(g) \\
\underline{\mathrm{H}(g)+\mathrm{Br}(g) \leftrightarrows} \mathrm{HBr}(g) \\
\mathrm{Br}_{2}(g)+2 \mathrm{Br}(g)+\mathrm{H}_{2}(g)+\mathrm{H}(g) \leftrightarrows 2 \mathrm{Br}(g)+2 \mathrm{HBr}(g)+\mathrm{H}(g)
\end{gathered}
$$

(3)

Canceling the reactants leaves the overall equation as $\mathrm{Br}_{2}(g)+\mathrm{H}_{2}(g) \leftrightarrows 2 \mathrm{HBr}(g)$.
Write the reaction quotients for each step:

$$
Q_{\mathrm{c} 1}=\frac{[\mathrm{Br}]^{2}}{\left[\mathrm{Br}_{2}\right]} \quad Q_{\mathrm{c} 2}=\frac{[\mathrm{HBr}][\mathrm{H}]}{[\mathrm{Br}]\left[\mathrm{H}_{2}\right]} \quad Q_{\mathrm{c} 3}=\frac{[\mathrm{HBr}]}{[\mathrm{H}][\mathrm{Br}]}
$$

and for the overall equation:

$$
Q_{\mathrm{c}}=\frac{[\mathrm{HBr}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{Br}_{2}\right]}
$$

Multiplying the individual Q_{c} 's and canceling terms gives

$$
Q_{\mathrm{c} 1} Q_{\mathrm{c} 2} Q_{\mathrm{c} 3}=\frac{[\mathrm{Br}]^{2}}{\left[\mathrm{Br}_{2}\right]} \times \frac{[\mathrm{HBr}][\mathrm{H}]}{[\mathrm{Br}]\left[\mathrm{H}_{2}\right]} \times \frac{[\mathrm{HBr}]}{[\mathrm{H}][\mathrm{Br}]}=\frac{[\mathrm{HBr}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{Br}_{2}\right]}
$$

The product of the multiplication of the three individual reaction quotients equals the overall reaction quotient.
17.2B Plan: Add the individual steps to find the overall equation, canceling substances that appear on both sides of the equation. Write the reaction quotient for each step and the overall equation. Multiply the reaction quotients for each step and cancel terms to obtain the overall reaction quotient.
Solution:

$$
\begin{gather*}
\mathrm{H}_{2}(g)+\mathrm{ICl}(g) \leftrightarrows \mathrm{HI}(g)+\mathrm{HCl}(g) \tag{1}\\
\underline{\mathrm{HI}(g)+\mathrm{ICl}(g) \leftrightarrows \mathrm{I}_{2}(g)+\mathrm{HCl}(g)} \\
\mathrm{H}_{2}(g)+2 \mathrm{ICl}(g)+\mathrm{HI}(g) \leftrightarrows \mathrm{H}(g)+2 \mathrm{HCl}(g)+\mathrm{I}_{2}(g)
\end{gather*}
$$

Canceling the reactants leaves the overall equation as $\mathrm{H}_{2}(g)+2 \mathrm{ICl}(g) \leftrightarrows 2 \mathrm{HCl}(g)+\mathrm{I}_{2}(g)$
Write the reaction quotients for each step:

$$
Q_{\mathrm{c} 1}=\frac{[\mathrm{HI}][\mathrm{HCl}]}{\left[\mathrm{H}_{2}\right][\mathrm{ICl}]} \quad Q_{\mathrm{c} 2}=\frac{\left[\mathrm{I}_{2}\right][\mathrm{HCl}]}{[\mathrm{HI}][\mathrm{ICl}]}
$$

and for the overall equation:

$$
Q_{\mathrm{c}}=\frac{[\mathrm{HCl}]^{2}\left[\mathrm{I}_{2}\right]}{\left[\mathrm{H}_{2}\right][\mathrm{ICl}]^{2}}
$$

Multiplying the individual Q_{c} 's and canceling terms gives

$$
Q_{\mathrm{c} 1} Q_{\mathrm{c} 2}=\frac{[\mathrm{HI}][\mathrm{HCl}]}{\left[\mathrm{H}_{2}\right][\mathrm{ICl}]} \mathrm{x} \frac{\left[\mathrm{I}_{2}\right][\mathrm{HCl}]}{[\mathrm{HI}][\mathrm{ICl}]}=\frac{[\mathrm{HCl}]^{2}\left[\mathrm{I}_{2}\right]}{\left[\mathrm{H}_{2}\right][\mathrm{ICl}]^{2}}
$$

The product of the multiplication of the two individual reaction quotients equals the overall reaction quotient.
17.3A Plan: When a reaction is multiplied by a factor, the equilibrium constant is raised to a power equal to the factor. When a reaction is reversed, the reciprocal of the equilibrium constant is used as the new equilibrium constant. Solution:
a) All coefficients have been multiplied by the factor $1 / 2$ so the equilibrium constant should be raised to the $1 / 2$ power (which is the square root).
For reaction a) $\quad K_{c}=\left(7.6 \times 10^{8}\right)^{1 / 2}=2.7568 \times 10^{4}=\mathbf{2 . 8} \times 10^{4}$
b) The reaction has been reversed so the new K_{c} is the reciprocal of the original equilibrium constant. The reaction has also been multiplied by a factor of $2 / 3$, so the reciprocal of the original $K_{\text {c }}$ must be raised to the $2 / 3$ power.
For reaction b) $K_{c}=\left(\frac{1}{7.6 \times 10^{8}}\right)^{\frac{2}{3}}=1.20076 \times 10^{-6}=1.2 \times 10^{-6}$
17.3B Plan: When a reaction is multiplied by a factor, the equilibrium constant is raised to a power equal to the factor. When a reaction is reversed, the reciprocal of the equilibrium constant is used as the new equilibrium constant. Solution:
a) All coefficients have been multiplied by the factor 2 . Additionally, the reaction has been reversed. Therefore, the reciprocal of the equilibrium constant should be raised to the 2 power.
For reaction a) $\quad K_{c}=\left(1 / 1.3 \times 10^{-2}\right)^{2}=5917.1598=5.9 \times 10^{3}$
b) All coefficients have been multiplied by the factor $1 / 4$ so the equilibrium constant should be raised to the $1 / 4$ power.
For reaction b) $\quad K_{\mathrm{c}}=\left(1.3 \times 10^{-2}\right)^{1 / 4}=0.33766=0.34$
17.4A Plan: K_{p} and K_{c} for a reaction are related through the ideal gas equation as shown in $K_{\mathrm{P}}=K_{\mathrm{c}}(R T)^{\Delta n}$. Find $\Delta n_{\text {gas }}$, the change in the number of moles of gas between reactants and products (calculated as products minus reactants). Then, use the given K_{c} to solve for K_{p}.

Solution:

The total number of product moles of gas is 1 and the total number of reactant moles of gas is 2 .

$$
\begin{aligned}
& \Delta n=1-2=-1 \\
& K_{\mathrm{P}}=K_{\mathrm{c}}(R T)^{\Delta n} \\
& K_{\mathrm{P}}=1.67[(0.0821 \mathrm{~atm} \cdot \mathrm{~L} / \mathrm{mol} \cdot \mathrm{~K})(500 . \mathrm{K})]^{-1} \\
& K_{\mathrm{P}}=0.040682095=\mathbf{4 . 0 7} \mathbf{x 1 0} \mathbf{0}^{-2}
\end{aligned}
$$

17.4B Plan: K_{p} and K_{c} for a reaction are related through the ideal gas equation as shown in $K_{\mathrm{P}}=K_{\mathrm{c}}(R T)^{\Delta n}$. Find $\Delta n_{\text {gas }}$, the change in the number of moles of gas between reactants and products (calculated as products minus reactants). Then, use the given K_{P} to solve for K_{c}.
Solution:
The total number of product moles of gas is 3 and the total number of reactant moles of gas is 5 .

$$
\begin{aligned}
& \Delta n=3-5=-2 \\
& K_{\mathrm{P}}=K_{\mathrm{c}}(R T)^{\Delta n} \\
& K_{\mathrm{P}}=K_{\mathrm{c}}(R T)^{-2} \\
& K_{\mathrm{P}}(R T)^{2}=K_{\mathrm{c}} \\
& K_{\mathrm{c}}=\left(3.0 \times 10^{-5}\right)[(0.0821 \mathrm{~atm} \cdot \mathrm{~L} / \mathrm{mol} \cdot \mathrm{~K})(1173 \mathrm{~K})]^{2}=0.27822976=\mathbf{0 . 2 8}
\end{aligned}
$$

17.5A Plan: Write the reaction quotient for the reaction and calculate Q_{c} for each circle. Compare Q_{c} to K_{c} to determine the direction needed to reach equilibrium. If $Q_{\mathrm{c}}>K_{\mathrm{c}}$, reactants are forming. If $Q_{\mathrm{c}}<K_{\mathrm{c}}$, products are forming.
Solution:
The reaction quotient is $\frac{[\mathrm{Y}]}{[\mathrm{X}]}$.
Circle 1: $Q_{\mathrm{c}}=\frac{[\mathrm{Y}]}{[\mathrm{X}]}=\frac{[3]}{[9]}=0.33$
Since $Q_{\mathrm{c}}<K_{\mathrm{c}}(0.33<1.4)$, the reaction will shift to the right to reach equilibrium
Circle 2: $Q_{\mathrm{c}}=\frac{[\mathrm{Y}]}{[\mathrm{X}]}=\frac{[7]}{[5]}=1.4$
Since $Q_{\mathrm{c}}=K_{\mathrm{c}}(1.4=1.4)$, there is no change in the reaction direction. The reaction is at equilibrium now.
Circle 3: $Q_{c}=\frac{[\mathrm{Y}]}{[\mathrm{X}]}=\frac{[8]}{[4]}=2.0$
Since $Q_{\mathrm{c}}>K_{\mathrm{c}}(2.0>1.4)$, the reaction will shift to the left to reach equilibrium
17.5B Plan: Write the reaction quotient for the reaction and calculate Q_{c} for each circle. Compare Q_{c} to K_{c} to determine the direction needed to reach equilibrium. If $Q_{\mathrm{c}}>K_{\mathrm{c}}$, reactants are forming. If $Q_{\mathrm{c}}<K_{\mathrm{c}}$, products are forming.
Solution:
The reaction quotient is $\frac{[\mathrm{D}]}{[\mathrm{C}]^{2}}$.
Circle 1: $Q_{\mathrm{c}}=\frac{[\mathrm{D}]}{[\mathrm{C}]^{2}}=\frac{[5]}{[3]^{2}}=0.56$
According to the problem, circle 1 is at equilibrium. Therefore, $K_{\mathrm{c}}=0.56$.
Circle 2: $Q_{c}=\frac{[\mathrm{D}]}{[\mathrm{C}]^{2}}=\frac{[6]}{[3]^{2}}=0.67$
Since $Q_{\mathrm{c}}>K_{\mathrm{c}}(0.67>0.56)$, the reaction will shift to the left to reach equilibrium.
Circle 3: $Q_{\mathrm{c}}=\frac{[\mathrm{D}]}{[\mathrm{C}]^{2}}=\frac{[7]}{[4]^{2}}=0.44$
Since $Q_{\mathrm{c}}<K_{\mathrm{c}}(0.44<0.56)$, the reaction will shift to the right to reach equilibrium
17.6A Plan: To decide whether $\mathrm{CH}_{3} \mathrm{Cl}$ or CH_{4} are forming while the reaction system moves toward equilibrium, calculate Q_{p} and compare it to K_{p}. If $Q_{\mathrm{p}}>K_{\mathrm{p}}$, reactants are forming. If $Q_{\mathrm{p}}<K_{\mathrm{p}}$, products are forming. Solution:

$$
Q_{\mathrm{P}}=\frac{P_{\mathrm{CH}_{3} \mathrm{Cl}} P_{\mathrm{HCl}}}{P_{\mathrm{CH}_{4}} P_{\mathrm{Cl}_{2}}}=\frac{(0.24 \mathrm{~atm})(0.47 \mathrm{~atm})}{(0.13 \mathrm{~atm})(0.035 \mathrm{~atm})}=24.7912=25
$$

K_{p} for this reaction is given as $1.6 \times 10^{4} . Q_{\mathrm{p}}$ is smaller than $K_{\mathrm{p}}\left(Q_{\mathrm{p}}<K_{\mathrm{p}}\right)$ so more products will form. $\mathbf{C H}_{3} \mathbf{C l}$ is one of the products forming.
17.6B Plan: To determine whether the reaction is at equilibrium or, if it is not at equilibrium, which direction to will proceed, calculate Q_{c} and compare it to K_{c}. If $Q_{\mathrm{c}}>K_{\mathrm{c}}$, the reaction will proceed to the left. If $Q_{\mathrm{c}}<K_{\mathrm{c}}$, the reaction will proceed to the right.
Solution:

$$
Q_{\mathrm{c}}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}=\frac{\left[\frac{1.2 \mathrm{~mol}}{2.0 \mathrm{~L}}\right]^{2}}{\left[\frac{3.4 \mathrm{~mol}}{2.0 \mathrm{~L}}\right]^{2}\left[\frac{1.5 \mathrm{~mol}}{2.0 \mathrm{~L}}\right]}=0.166089965=0.17
$$

The system is not at equilibrium. K_{c} for this reaction is given as $4.2 \times 10^{-2} . Q_{\mathrm{c}}$ is larger than $K_{\mathrm{c}}\left(Q_{\mathrm{c}}>K_{\mathrm{c}}\right)$ so the reaction will proceed to the left.
17.7A Plan: The information given includes the balanced equation, initial pressures of both reactants, and the equilibrium pressure for one reactant. First, set up a reaction table showing initial partial pressures for reactants and 0 for product. The change to get to equilibrium is to react some of reactants to form some product. Use the equilibrium quantity for O_{2} and the expression for O_{2} at equilibrium to solve for the change. From the change find the equilibrium partial pressure for NO and NO_{2}. Calculate K_{p} using the equilibrium values. Solution:

Pressures (atm)	$2 \mathrm{NO}(g)$	+	$\mathrm{O}_{2}(\mathrm{~g})$	\leftrightarrows	$2 \mathrm{NO}_{2}(\mathrm{~g})$
Initial	1.000		1.000		0
Change	-2x		-x		$+2 \mathrm{x}$
Equilibrium	$1.000-2 \mathrm{x}$		1.000 - x		2x
At equilibrium	$P_{\mathrm{O}_{2}}=0.506 \mathrm{~atm}=1.000-\mathrm{x}$; so $\mathrm{x}=1.000-0.506=0.494 \mathrm{~atm}$				
	$P_{\text {NO }}=1.000-2 \mathrm{x}=1.000-2(0.494)=0.012 \mathrm{~atm}$				
	$P_{\mathrm{NO}_{2}}=2$		(0.494) $=0$.		

Use the equilibrium pressures to calculate K_{p}.

$$
K_{\mathrm{P}}=\frac{P_{\mathrm{NO}_{2}}^{2}}{P_{\mathrm{NO}}^{2} P_{\mathrm{O}_{2}}}=\frac{(0.988)^{2}}{(0.012)^{2}(0.506)}=1.339679 \times 10^{4}=\mathbf{1 . 3 \times 1 0}{ }^{4}
$$

17.7B Plan: The information given includes the balanced equation, initial concentrations of both reactants, and the equilibrium concentration for one product. First, set up a reaction table showing initial concentrations for reactants and 0 for products. The change to get to equilibrium is to react some of reactants to form some of the products. Use the equilibrium quantity for $\mathrm{N}_{2} \mathrm{O}_{4}$ and the expression for $\mathrm{N}_{2} \mathrm{O}_{4}$ at equilibrium to solve for the change. From the change find the equilibrium concentrations for $\mathrm{NH}_{3}, \mathrm{O}_{2}$, and $\mathrm{H}_{2} \mathrm{O}$. Calculate K_{c} using the equilibrium values. Solution:

Pressures (atm)	$4 \mathrm{NH}_{3}(\mathrm{~g})+$	$7 \mathrm{O}_{2}(\mathrm{~g})$	\leftrightarrows	$2 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g})+$	$6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Initial	2.40	2.40		0	0
Change	-4x	-7x		+2x	+6x
Equilibrium	$2.40-4 \mathrm{x}$	$2.40-7 \mathrm{x}$		2x	6x
At equilibrium	$\begin{aligned} & {\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=0 .} \\ & {\left[\mathrm{NH}_{3}\right]=2.4} \\ & {\left[\mathrm{O}_{2}\right]=2.40} \\ & {\left[\mathrm{H}_{2} \mathrm{O}\right]=6(0)} \end{aligned}$	$\begin{aligned} & 4 M=2 \mathrm{x} ; \mathrm{s} \\ & M-4(0.067 \\ & -7(0.0670 \\ & 570 M)=0 . \end{aligned}$			

Use the equilibrium pressures to calculate K_{c}.

$$
K_{\mathrm{c}}=\frac{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}}{\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{7}}=\frac{(0.134)^{2}(0.402)^{6}}{(2.13)^{4}(1.93)^{7}}=3.6910 \times 10^{-8}=\mathbf{3 . 6 9} \times 10^{-8}
$$

17.8A Plan: Convert K_{c} to K_{p} for the reaction. Write the equilibrium expression for K_{p} and insert the atmospheric pressures for $P_{\mathrm{N}_{2}}$ and $P_{\mathrm{O}_{2}}$ as their equilibrium values. Solve for P_{NO}.
Solution:
The conversion of K_{c} to $K_{\mathrm{p}}: K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n}$. For this reaction $\Delta n=0$, so $K_{\mathrm{p}}=K_{\mathrm{c}}$.

$$
\begin{gathered}
K_{\mathrm{P}}=\frac{P_{\mathrm{N}_{2}} P_{\mathrm{O}_{2}}}{P_{\mathrm{NO}}^{2}}=K_{\mathrm{c}}=2.3 \times 10^{30}=\frac{(0.781)(0.209)}{\mathrm{x}^{2}} \\
\mathrm{x}=2.6640 \times 10^{-16}=2.7 \times 10^{-16} \mathrm{~atm}
\end{gathered}
$$

The equilibrium partial pressure of NO in the atmosphere is $\mathbf{2 . 7 \times 1 0 ^ { - 1 6 }} \mathbf{~ a t m}$.
17.8B Plan: Write the equilibrium expression for K_{p} and insert the partial pressures for PH_{3} and P_{2} as their equilibrium values. Solve for the partial pressure of H_{2}.
Solution:

$$
K_{\mathrm{P}}=\frac{\left(P_{\mathrm{P}_{2}}\right)\left(P_{\mathrm{H}_{2}}\right)^{3}}{\left(P_{\mathrm{PH}_{3}}\right)^{2}}=\sqrt[3]{\frac{K_{\mathrm{P}}\left(P_{\mathrm{PH}_{3}}\right)^{2}}{\left(P_{\mathrm{P}_{2}}\right)}}=P_{\mathrm{H}_{2}}=\sqrt[3]{\frac{(19.6)(0.112)^{2}}{(0.215)}}=1.0457=\mathbf{1 . 0 5} \mathbf{~ a t m}
$$

17.9A Plan: Find the initial molarity of HI by dividing moles of HI by the volume. Set up a reaction table and use the variables to find equilibrium concentrations in the equilibrium expression.
Solution:
$M_{\mathrm{HI}}=\frac{\text { moles } \mathrm{HI}}{\text { volume }}=\frac{2.50 \mathrm{~mol}}{10.32 \mathrm{~L}}=0.242248 \mathrm{M}$

Concentration (M)	$2 \mathrm{HI}(g)$	\leftrightarrows	$\mathrm{H}_{2}(g)$	+
Initial	0.242248		$\mathrm{I}_{2}(g)$	
Change	-2 x		+x	0
Equilibrium	$0.242248-2 \mathrm{x}$		x	+x

Set up equilibrium expression:
$K_{\mathrm{c}}=1.26 \times 10^{-3}=\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}{[\mathrm{HI}]^{2}}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.242248-2 \mathrm{x}]^{2}} \quad$ Take the square root of each side.
$3.54965 \times 10^{-2}=\frac{[\mathrm{x}]}{[0.242248-2 \mathrm{x}]}$
$\mathrm{x}=8.59895 \times 10^{-3}-7.0993 \times 10^{-2} \mathrm{x}$
$\mathrm{x}=8.02895 \times 10^{-3}=8.03 \times 10^{-3}$
$\left[\mathrm{H}_{2}\right]=\left[\mathrm{I}_{2}\right]=8.02 \times 10^{-3} \boldsymbol{M}$
17.9B Plan: Find the initial molarities of $\mathrm{Cl}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$ by dividing moles by the volume of the flask. Set up a reaction table and use the variables to find equilibrium concentrations in the equilibrium expression.
Solution:
Molarity of $\mathrm{Cl}_{2} \mathrm{O}=\frac{\text { moles } \mathrm{Cl}_{2} \mathrm{O}}{\text { volume }}=\frac{6.15 \mathrm{~mol}}{5.00 \mathrm{~L}}=1.23 \mathrm{M}$
Molarity of $\mathrm{H}_{2} \mathrm{O}=\frac{\text { moles } \mathrm{H}_{2} \mathrm{O}}{\text { volume }}=\frac{6.15 \mathrm{~mol}}{5.00 \mathrm{~L}}=1.23 \mathrm{M}$

Concentration (M)	$\mathrm{Cl}_{2} \mathrm{O}(\mathrm{g})+$	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	\leftrightarrows	$2 \mathrm{HOCl}(\mathrm{g})$
Initial	1.23	1.23	0	
Change	-x	-x		+2 x
Equilibrium	$1.23-\mathrm{x}$	$1.23-\mathrm{x}$	2 x	

Set up equilibrium expression:
$K_{\mathrm{c}}=0.18=\frac{[\mathrm{HOCl}]^{2}}{\left[\mathrm{Cl}_{2} \mathrm{O}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}=\frac{[2 \mathrm{x}]^{2}}{[1.23-\mathrm{x}][1.23-\mathrm{x}]}$

Take the square root of each side.
$0.424264068=\frac{[2 \mathrm{x}]}{[1.23-\mathrm{x}]}$
$0.521844804-0.424264068 \mathrm{x}=2 \mathrm{x}$
$0.521844804=2.424264068 \mathrm{x}$
$\mathrm{x}=0.215259000=0.21 \mathrm{M}$
$\left[\mathrm{Cl}_{2} \mathrm{O}\right]=\left[\mathrm{H}_{2} \mathrm{O}\right]=1.23 \mathrm{M}-0.21 \mathrm{M}=\mathbf{1 . 0 2} \mathbf{M}$
$[\mathrm{HOCl}]=2(0.21 \mathrm{M})=\mathbf{0 . 4 2} \mathbf{M}$
17.10A Plan: Find the molarity of I_{2} by dividing moles of I_{2} by the volume. First set up the reaction table, then set up the equilibrium expression. To solve for the variable, x , first assume that x is negligible with respect to initial concentration of I_{2}. Check the assumption by calculating the $\%$ error. If the error is greater than 5%, calculate x using the quadratic equation. The next step is to use x to determine the equilibrium concentrations of I_{2} and I . Solution:
$\left[\mathrm{I}_{2}\right]_{\text {init }}=\frac{0.50 \mathrm{~mol}}{2.5 \mathrm{~L}}=0.20 \mathrm{M}$
a) Equilibrium at 600 K

Concentration (M)	$\mathrm{I}_{2}(g)$	\leftrightarrows	$2 \mathrm{I}(g)$
Initial	0.20	0	
Change	-x	+2 x	
Equilibrium	$0.20-\mathrm{x}$	2 x	
Equilibrium expression:	$K_{\mathrm{c}}=\frac{[\mathrm{I}]^{2}}{\left[\mathrm{I}_{2}\right]}=2.94 \times 10^{-10}$		

$$
\begin{aligned}
& \qquad \frac{[2 \mathrm{x}]^{2}}{[0.20-\mathrm{x}]}=2.94 \times 10^{-10} \quad \text { Assume } \mathrm{x} \text { is negligible so } 0.20-\mathrm{x} \approx 0.20 \\
& \frac{[2 \mathrm{x}]^{2}}{[0.20]}=2.94 \times 10^{-10} \\
& 4 \mathrm{x}^{2}=\left(2.94 \times 10^{-10}\right)(0.20) ; \mathrm{x}=3.834 \times 10^{-6}=3.8 \times 10^{-6} \\
& \text { Check the assumption by calculating the } \% \text { error: }
\end{aligned}
$$

$$
\frac{3.8 \times 10^{-6}}{0.20}(100)=0.0019 \% \text { which is smaller than } 5 \% \text {, so the assumption is valid. }
$$

$$
\text { At equilibrium }[\mathrm{I}]_{\mathrm{eq}}=2 \mathrm{x}=2\left(3.8 \times 10^{-6}\right)=7.668 \times 10^{-6}=7.7 \times 10^{-6} \mathbf{M} \text { and }
$$

$$
\left[I_{2}\right]_{\mathrm{eq}}=0.20-\mathrm{x}=0.20-3.834 \times 10^{-6}=0.199996=\mathbf{0 . 2 0} \mathbf{M}
$$

b) Equilibrium at 2000 K

$$
\text { Equilibrium expression: } \quad K_{\mathrm{c}}=\frac{[\mathrm{I}]^{2}}{\left[\mathrm{I}_{2}\right]}=0.209
$$

$$
\frac{[2 x]^{2}}{[0.20-x]}=0.209 \quad \text { Assume } x \text { is negligible so } 0.20-x \text { is approximately } 0.20
$$

$$
\frac{[2 x]^{2}}{[0.20]}=0.209
$$

$$
4 x^{2}=(0.209)(0.20)
$$

$$
x=0.102225=0.102
$$

Check the assumption by calculating the \% error:
$\frac{0.102}{0.20}(100)=51 \%$ which is larger than 5% so the assumption is not valid. Solve using quadratic equation.

$$
\begin{aligned}
& \frac{[2 x]^{2}}{[0.20-x]}=0.209 \\
& 4 x^{2}+0.209 x-0.0418=0 \\
& x=\frac{-0.209 \pm \sqrt{(0.209)^{2}-4(4)(-0.0418)}}{2(4)}=0.0793857 \text { or }-0.1316
\end{aligned}
$$

Choose the positive value, $\mathrm{x}=0.079$
At equilibrium $[\mathrm{I}]_{\mathrm{eq}}=2 \mathrm{x}=2(0.079)=0.15877=\mathbf{0 . 1 6} \boldsymbol{M}$ and
$\left[\mathrm{I}_{2}\right]_{\mathrm{eq}}=0.20-\mathrm{x}=0.20-0.079=0.12061=\mathbf{0 . 1 2} \boldsymbol{M}$
17.10B Plan: First set up the reaction table, then set up the equilibrium expression. To solve for the variable, x, first assume that x is negligible with respect to initial partial pressure of PCl_{5}. Check the assumption by calculating the \% error. If the error is greater than 5%, calculate x using the quadratic equation. The next step is to use x to determine the equilibrium partial pressure of PCl_{5}.
Solution:
a) Equilibrium at a PCl_{5} partial pressure of 0.18 atm:

Check the assumption by calculating the \% error:
$\frac{7.8 \times 10^{-3}}{0.18}(100)=4.3 \%$ which is smaller than 5%, so the assumption is valid.
At equilibrium $\left[\mathrm{PCl}_{5}\right]_{\text {eq }}=0.18 \mathrm{M}-7.8 \times 10^{-3} \mathrm{M}=\mathbf{0 . 1 7} \mathbf{M}$
b) Equilibrium at a PCl_{5} partial pressure of 0.18 atm :

Check the assumption by calculating the \% error:
$\frac{2.9 \times 10^{-3}}{0.025}(100)=12 \%$ which is larger than 5%, so the assumption is NOT valid. Solve using quadratic equation.
$\frac{(\mathrm{x})(\mathrm{x})}{(0.025-\mathrm{x})}=3.4 \times 10^{-4}$

$$
\begin{aligned}
& x^{2}+3.4 \times 10^{-4} x-8.5 \times 10^{-6}=0 \\
& x=\frac{+8.5 \times 10^{-6} \pm \sqrt{\left(3.4 \times 10^{-4}\right)^{2}-4(1)\left(-8.5 \times 10^{-6}\right)}}{2(1)}=0.002750428051 \text { or }-0.003090428051
\end{aligned}
$$

Choose the positive value, $\mathrm{x}=0.0028 \mathrm{M}$; At equilibrium $\left[\mathrm{PCl}_{5}\right]_{\text {eq }}=0.025 \mathrm{M}-0.0028 \mathrm{M}=\mathbf{0 . 0 2 2} \mathbf{M}$
17.11A Plan: Calculate the initial concentrations (molarity) of each substance. For part (a), calculate Q_{c} and compare to given K_{c}. If $Q_{\mathrm{c}}>K_{\mathrm{c}}$ then the reaction proceeds to the left to make reactants from products. If $Q_{\mathrm{c}}<K_{\mathrm{c}}$ then the reaction proceeds to right to make products from reactants. For part (b), use the result of part (a) and the given equilibrium concentration of PCl_{5} to find the equilibrium concentrations of PCl_{3} and Cl_{2}.
Solution:
Initial concentrations: $\quad\left[\mathrm{PCl}_{5}\right]=\frac{0.1050 \mathrm{~mol}}{0.5000 \mathrm{~L}}=0.2100 \mathrm{M}$

$$
\left[\mathrm{PCl}_{3}\right]=\left[\mathrm{Cl}_{2}\right]=\frac{0.0450 \mathrm{~mol}}{0.5000 \mathrm{~L}}=0.0900 \mathrm{M}
$$

a) $Q_{\mathrm{c}}=\frac{\left[\mathrm{PCl}_{3}\right]\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{PCl}_{5}\right]}=\frac{[0.0900][0.0900]}{[0.2100]}=0.038571=0.0386$
$Q_{\mathrm{c}}, 0.0386$, is less than $K_{\mathrm{c}}, 0.042$, so the reaction will proceed to the right to make more products.
b) To reach equilibrium, concentrations will increase for the products, PCl_{3} and Cl_{2}, and decrease for the reactant, PCl_{5}.

Concentration (M)	$\mathrm{PCl}_{5}(g)$	\leftrightarrows	$\mathrm{PCl}_{3}(g)+$	$\mathrm{Cl}_{2}(g)$
Initial	0.2100		0.0900	0.0900
Change	-x		+x	+x
Equilibrium	$0.2100-\mathrm{x}$		$0.0900+\mathrm{x}$	$0.0900+\mathrm{x}$

$$
\begin{aligned}
& {\left[\mathrm{PCl}_{5}\right]=0.2065=0.2100-\mathrm{x} ; \mathrm{x}=0.0035 \mathrm{M}} \\
& {\left[\mathrm{PCl}_{3}\right]=\left[\mathrm{Cl}_{2}\right]=0.0900+\mathrm{x}=0.0900+0.0035=\mathbf{0 . 0 9 3 5} \mathbf{M}}
\end{aligned}
$$

17.11B Plan: For part (a), calculate Q_{P} and compare to given K_{P}. If $Q_{P}>K_{P}$ then the reaction proceeds to the left to make reactants from products. If $Q_{\mathrm{P}}<K_{\mathrm{P}}$ then the reaction proceeds to right to make products from reactants. For part (b), set up a reaction table and use the variables to find equilibrium concentrations in the equilibrium expression. Solution:
$Q_{\mathrm{P}}=\frac{\left(P_{\mathrm{NO}}\right)^{2}}{\left(P_{\mathrm{N}_{2}}\right)\left(P_{\mathrm{O}_{2}}\right)}=\frac{(0.750)^{2}}{(0.500)(0.500)}=2.25$
$Q_{\mathrm{P}}, 2.25$, is greater than $K_{\mathrm{P}}, 8.44 \times 10^{-3}$, so the reaction will proceed to the left to make more reactants.
To reach equilibrium, concentrations will increase for the reactants, N_{2} and O_{2}, and decrease for the product, NO.

Pressure (atm)	$\mathrm{N}_{2}(\mathrm{~g})+$	$\mathrm{O}_{2}(\mathrm{~g})$	\leftrightarrows	$2 \mathrm{NO}(\mathrm{g})$
Initial	0.500	0.500	0.750	
Change	+x	+x	-2 x	
Equilibrium	$0.500+\mathrm{x}$	$0.500+\mathrm{x}$	$0.750-2 \mathrm{x}$	

$K_{\mathrm{P}}=\frac{\left(P_{\mathrm{NO}}\right)^{2}}{\left(P_{\mathrm{N}_{2}}\right)\left(P_{\mathrm{O}_{2}}\right)}=\frac{(0.750-2 \mathrm{x})^{2}}{(0.500+\mathrm{x})(0.500+\mathrm{x})}=8.44 \times 10^{-3}$
Take the square root of each side.
$\frac{(0.750-2 \mathrm{x})}{(0.500+\mathrm{x})}=0.0919$
$0.750-2 \mathrm{x}=0.0460+0.0919 \mathrm{x}$
$0.704=2.0919 \mathrm{x}$
$\mathrm{x}=0.337 \mathrm{M}$
$\left[\mathrm{N}_{2}\right]=\left[\mathrm{O}_{2}\right]=0.500 \mathrm{M}+0.337 \mathrm{M}=\mathbf{0 . 8 3 7} \mathbf{M}$
$[\mathrm{NO}]=0.750 \mathrm{M}-2(0.337 \mathrm{M})=\mathbf{0 . 0 7 6} \mathbf{M}$
17.12A Plan: Examine each change for its impact on Q_{c}. Then decide how the system would respond to re-establish equilibrium.
Solution:
$Q_{\mathrm{c}}=\frac{\left[\mathrm{SiF}_{4}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}{[\mathrm{HF}]^{4}}$
a) Decreasing $\left[\mathrm{H}_{2} \mathrm{O}\right]$ leads to $Q_{c}<K_{\mathrm{c}}$, so the reaction would shift to make more products from reactants. Therefore, the SiF_{4} concentration, as a product, would increase.
b) Adding liquid water to this system at a temperature above the boiling point of water would result in an increase in the concentration of water vapor. The increase in $\left[\mathrm{H}_{2} \mathrm{O}\right]$ increases Q_{c} to make it greater than K_{c} To re-establish equilibrium products will be converted to reactants and the [SiF_{4}] will decrease.
c) Removing the reactant HF increases Q_{c}, which causes the products to react to form more reactants. Thus,
[SiF_{4}] decreases.
d) Removal of a solid product has no impact on the equilibrium; $\left[\mathrm{SiF}_{4}\right]$ does not change.

Check: Look at each change and decide which direction the equilibrium would shift using Le Châtelier's principle to check the changes predicted above.
a) Remove product, equilibrium shifts to right.
b) Add product, equilibrium shifts to left.
c) Remove reactant, equilibrium shifts to left.
d) Remove solid reactant, equilibrium does not shift.
17.12B Plan: Examine each change for its impact on Q_{c}. Then decide how the system would respond to re-establish equilibrium.
Solution:
$Q_{\mathrm{c}}=\frac{[\mathrm{CO}]\left[\mathrm{H}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]}$
a) Adding carbon, a solid reactant, has no impact on the equilibrium. [CO] does not change.
b) Removing water vapor, a reactant, increases Q_{c}, which causes the products to react to form more reactants.

Thus, [CO] decreases.
c) Removing the product H_{2} decreases Q_{c}, which causes the reactants to react to form more products. Thus, [CO] increases.
d) Adding water vapor, a reactant, decreases Q_{c}, which causes the reactants to react to form more products. Thus, [CO] increases.
Check: Look at each change and decide which direction the equilibrium would shift using Le Châtelier’s principle to check the changes predicted above.
a) Add solid reactant, equilibrium does not shift.
b) Remove reactant, equilibrium shifts to the left.
c) Remove product, equilibrium shifts to the right.
d) Add reactant, equilibrium shifts to the right.
17.13A Plan: Changes in pressure (and volume) affect the concentration of gaseous reactants and products. A decrease in pressure, i.e., increase in volume, favors the production of more gas molecules whereas an increase in pressure favors the production of fewer gas molecules. Examine each reaction to decide whether more or fewer gas molecules will result from producing more products. If more gas molecules result, then the pressure should be increased (volume decreased) to reduce product formation. If fewer gas molecules result, then pressure should be decreased to produce more reactants.
Solution:
a) In $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \leftrightarrows 2 \mathrm{SO}_{3}(g)$ three molecules of gas form two molecules of gas, so there are fewer gas molecules in the product. Decreasing pressure (increasing volume) will decrease the product yield.
b) In $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrows 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) 9$ molecules of reactant gas convert to 10 molecules of product gas. Increasing pressure (decreasing volume) will favor the reaction direction that produces fewer moles of gas: towards the reactants and away from products.
c) In $\mathrm{CaC}_{2} \mathrm{O}_{4}(s) \leftrightarrows \mathrm{CaCO}_{3}(s)+\mathrm{CO}(g)$ there are no reactant gas molecules and one product gas molecule. The yield of the products will decrease when volume decreases, which corresponds to a pressure increase.
17.13B Plan: Changes in pressure (and volume) affect the concentration of gaseous reactants and products. A decrease in pressure, i.e., increase in volume, favors the production of more gas molecules whereas an increase in pressure favors the production of fewer gas molecules. Examine each reaction to determine if a decrease in pressure will shift the reaction toward the products (resulting in an increase in the yield of products) or toward the reactants (resulting in a decrease in the yield of products).
Solution:
a) In $\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g})$ two molecules of gas form four molecules of gas, so there are more gas molecules in the product. Decreasing pressure (increasing volume) will shift the reaction to the right, increasing the product yield.
b) In $\mathrm{NO}(g)+\mathrm{CO}_{2}(g) \leftrightarrows \mathrm{NO}_{2}(g)+\mathrm{CO}(g) 2$ molecules of reactant gas convert to 2 molecules of product gas. Decreasing pressure (increasing volume) will have no effect on this reaction or on the amount of product produced because the number of moles of gas does not change.
c) In $2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{SO}_{2}(\mathrm{~g}) \leftrightarrows 3 \mathrm{~S}\left(\mathrm{~s}+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right.$ three molecules of reactant gas convert to 2 molecules of product gas. Decreasing pressure (increasing volume) will shift the reaction toward the reactants, decreasing the product yield.
17.14A Plan: A decrease in temperature favors the exothermic direction of an equilibrium reaction. First, identify whether the forward or reverse reaction is exothermic from the given enthalpy change. $\Delta H<0$ means the forward reaction is exothermic, and $\Delta H>0$ means the reverse reaction is exothermic. If the forward reaction is exothermic then a decrease in temperature will shift the equilibrium to make more products from reactants and increase K_{p}. If the reverse reaction is exothermic then a decrease in temperature will shift the equilibrium to make more reactants from products and decrease K_{p}.

Solution:

a) $\Delta H<0$ so the forward reaction is exothermic. A decrease in temperature increases the partial pressure of products and decreases the partial pressures of reactants, so $P_{\mathrm{H}_{2}}$ decreases. With increases in product pressures and decreases in reactant pressures, $\boldsymbol{K}_{\mathbf{p}}$ increases.
b) $\Delta H>0$ so the reverse reaction is exothermic. A decrease in temperature decreases the partial pressure of products and increases the partial pressures of reactants, so $P_{\mathrm{N}_{2}}$ increases. $\boldsymbol{K}_{\mathbf{p}}$ decreases with decrease in product pressures and increase in reactant pressures.
c) $\Delta H<0$ so the forward reaction is exothermic. Decreasing temperature increases $P_{\mathrm{PCl}_{5}}$ and increases $\boldsymbol{K}_{\mathbf{p}}$.
17.14B Plan: A decrease in temperature favors the exothermic direction of an equilibrium reaction. First, identify whether the forward or reverse reaction is exothermic from the given enthalpy change. $\Delta H<0$ means the forward reaction is exothermic, and $\Delta H>0$ means the reverse reaction is exothermic. If the forward reaction is exothermic then a decrease in temperature will shift the equilibrium to make more products from reactants and increase K_{p}. If the reverse reaction is exothermic then an increase in temperature will shift the equilibrium to make more products from reactants and increase K_{p}.
Solution:
a) $\Delta H>0$ so the reverse reaction is exothermic. An increase in temperature will increase the partial pressure of products and decrease the partial pressures of reactants. $\boldsymbol{K}_{\mathbf{p}}$ increases with an increase in product pressures and a decrease in reactant pressures.
b) $\Delta H<0$ so the forward reaction is exothermic. A decrease in temperature increases the partial pressure of products and decreases the partial pressures of reactants. With increases in product pressures and decreases in reactant pressures, $\boldsymbol{K}_{\mathbf{p}}$ increases.
c) $\Delta H>0$ so the reverse reaction is exothermic. An increase in temperature increases the partial pressure of products and decreases the partial pressures of reactants. $\boldsymbol{K}_{\mathbf{p}}$ increases with an increase in product pressures and a decrease in reactant pressures.
17.15A Plan: Given the balanced equilibrium equation, it is possible to set up the appropriate equilibrium expression $\left(Q_{\mathrm{c}}\right)$. For the equation given $\Delta n=0$ meaning that $K_{\mathrm{p}}=K_{\mathrm{c}}$. The value of K may be found for scene 1 , and values for Q may be determined for the other two scenes. The reaction will shift towards the reactant side if $Q>K$, and the reaction will shift towards the product side if $Q<K$. The reaction is exothermic $(\Delta H<0)$, thus, heat may be considered a product. Increasing the temperature adds a product and decreasing the temperature removes a product.

Solution:
a) K_{p} requires the equilibrium value of P for each gas. The pressure may be found from $P=n R T / V$.

$$
K_{\mathrm{p}}=\frac{P_{\mathrm{CD}}^{2}}{P_{\mathrm{C}_{2}} P_{\mathrm{D}_{2}}}=\frac{\left(\frac{n_{\mathrm{CD}} R T}{V}\right)^{2}}{\left(\frac{n_{\mathrm{C}_{2}} R T}{V}\right)\left(\frac{n_{\mathrm{D}_{2}} R T}{V}\right)}
$$

This equation may be simplified because for the sample R, T, and V are constant. Using scene 1 :

$$
K_{\mathrm{p}}=\frac{n_{\mathrm{CD}}^{2}}{n_{\mathrm{C}_{2}} n_{\mathrm{D}_{2}}}=\frac{(4)^{2}}{(2)(2)}=\mathbf{4}
$$

b) Scene 2: $Q_{\mathrm{p}}=\frac{n_{\mathrm{CD}}^{2}}{n_{\mathrm{C}_{2}} n_{\mathrm{D}_{2}}}=\frac{(6)^{2}}{(1)(1)}=36$
$Q>K$ so the reaction will shift to the left (towards the reactants).
Scene 3: $Q_{\mathrm{p}}=\frac{n_{\mathrm{CD}}^{2}}{n_{\mathrm{C}_{2}} n_{\mathrm{D}_{2}}}=\frac{(2)^{2}}{(3)(3)}=0.44$
$Q<K$ so the reaction will shift to the right (towards the products).
c) Increasing the temperature is equivalent to adding a product (heat) to the equilibrium. The reaction will shift to consume the added heat. The reaction will shift to the left (towards the reactants). However, since there are 2 moles of gas on each side of the equation, the shift has no effect on total moles of gas.
17.15B Plan: Write the equilibrium expression for the reaction. Count the number of each type of particle in the first scene and use this information to calculate the value of K at T_{1}. Follow a similar procedure to calculate the value of K at T_{2}. Determine if K at T_{1} is larger or smaller than K at T_{2}. Use this information to determine the sign of ΔH for the reaction.
Solution:
a) $K=\frac{[\mathrm{AB}]}{[\mathrm{A}][\mathrm{B}]}$

Calculating K at T_{1} :
$K=\frac{[3]}{[2][2]}=\mathbf{0 . 7 5}$
b) Going from the scene at T_{1} to the scene at T_{2}, the number of product molecules decreases. This decreases the value of K. The problem states that $T_{2}<T_{1}$, so as the temperature decreases, K also decreases. The fact that both the temperature and the value of K decreased suggests that this is an endothermic reaction, with $\mathbf{\Delta H}>\mathbf{0}$.
c) Calculating K at T_{2} :
$K=\frac{[2]}{[3][3]}=\mathbf{0 . 2 2}$

CHEMICAL CONNECTIONS BOXED READING PROBLEM

B17.1 Plan: To control the pathways, the first enzyme specific for a branch is inhibited by the end product of that branch.
Solution:
a) The enzyme that is inhibited by F is the first enzyme in that branch, which is enzyme 3.
b) Enzyme 6 is inhibited by I.
c) If F inhibited enzyme 1, then neither branch of the reaction would take place once enough F was produced.
d) If F inhibited enzyme 6, then the second branch would not take place when enough F was made.

END-OF-CHAPTER PROBLEMS

17.1 If the rate of the forward reaction exceeds the rate of reverse reaction, products are formed faster than they are consumed. The change in reaction conditions results in more products and less reactants. A change in reaction conditions can result from a change in concentration or a change in temperature. If concentration changes, product concentration increases while reactant concentration decreases, but the K_{c} remains unchanged because the ratio of products and reactants remains the same. If the increase in the forward rate is due to a change in temperature, the rate of the reverse reaction also increases. The equilibrium ratio of product concentration to reactant concentration is no longer the same. Since the rate of the forward reaction increases more than the rate of the reverse reaction, K_{c} increases (numerator, [products], is larger and denominator, [reactants], is smaller).

$$
K_{\mathrm{c}}=\frac{[\text { products }]}{[\text { reactants }]}
$$

17.2 The faster the rate and greater the yield, the more useful the reaction will be to the manufacturing process.
17.3 A system at equilibrium continues to be very dynamic at the molecular level. Reactant molecules continue to form products, but at the same rate that the products decompose to re-form the reactants.
17.4 If K is very large, the reaction goes nearly to completion. A large value of K means that the numerator is much larger than the denominator in the K expression. A large numerator, relative to the denominator, indicates that most of the reactants have reacted to become products. $K=\frac{[\text { products }]}{[\text { reactants }]}$
17.5 One cannot say with certainty whether the value of K for the phosphorus plus oxygen reaction is large or small (although it likely is large). However, it is certain that the reaction proceeds very fast.
17.6 No, the value of Q is determined by the mass action expression with arbitrary concentrations for products and reactants. Thus, its value is not constant.
17.7 The equilibrium constant expression is $K=\left[\mathrm{O}_{2}\right]$ (we do not include solid substances in the equilibrium expression). If the temperature remains constant, K remains constant. If the initial amount of $\mathrm{Li}_{2} \mathrm{O}_{2}$ present was sufficient to reach equilibrium, the amount of O_{2} obtained will be constant, regardless of how much $\mathrm{Li}_{2} \mathrm{O}_{2}(s)$ is present.
17.8 a) On the graph, the concentration of HI increases at twice the rate that H_{2} decreases because the stoichiometric ratio in the balanced equation is $1 \mathrm{H}_{2}: 2 \mathrm{HI}$. Q for a reaction is the ratio of concentrations of products to concentrations of reactants. As the reaction progresses the concentration of reactants H_{2} and I_{2} decrease and the concentration of product HI increases, which means that Q increases as a function of time.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{HI}(\mathrm{~g}) \quad Q=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}
$$

The value of Q increases as a function of time until it reaches the value of K.
b) No, Q would still increase with time because the $\left[\mathrm{I}_{2}\right]$ would decrease in exactly the same way as $\left[\mathrm{H}_{2}\right]$ decreases.
17.9 A homogeneous equilibrium reaction exists when all the components of the reaction are in the same phase (i.e., gas, liquid, solid, aqueous).
$2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \leftrightarrows 2 \mathrm{NO}_{2}(g)$
A heterogeneous equilibrium reaction exists when the components of the reaction are in different phases.
$\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}(a q) \leftrightarrows \mathrm{CaCO}_{3}(s)+\mathrm{H}_{2} \mathrm{O}(l)+\mathrm{CO}_{2}(g)$
$17.10 \quad 1 / 2 \mathrm{~N}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \leftrightarrows \mathrm{NO}(g)$

$$
Q_{\mathrm{c}(\text { form })}=\frac{[\mathrm{NO}]}{\left[\mathrm{N}_{2}\right]^{1 / 2}\left[\mathrm{O}_{2}\right]^{1 / 2}}
$$

$\mathrm{NO}(\mathrm{g}) \leftrightarrows 1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$
$Q_{\text {c(decomp) }}=\frac{\left[\mathrm{N}_{2}\right]^{1 / 2}\left[\mathrm{O}_{2}\right]^{1 / 2}}{[\mathrm{NO}]}$
$Q_{c(\text { decomp) }}=1 / Q_{c(\text { form })}$, so the constants do differ (they are the reciprocal of each other).
17.11 Plan: Write the reaction and then the expression for Q. Remember that $Q=\frac{[\mathrm{C}]^{c}[\mathrm{D}]^{d}}{[\mathrm{~A}]^{a}[\mathrm{~B}]^{b}}$ where A and B are reactants, C and D are products, and a, b, c, and d are the stoichiometric coefficients in the balanced equation. Solution:
The balanced equation for the first reaction is
$3 / 2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{~N}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{NH}_{3}(\mathrm{~g}) \quad$ (1)
The coefficient in front of NH_{3} is fixed at 1 mole according to the description. The reaction quotient for this reaction is $Q_{1}=\frac{\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{H}_{2}\right]^{3 / 2}\left[\mathrm{~N}_{2}\right]^{1 / 2}}$.
In the second reaction, the coefficient in front of N_{2} is fixed at 1 mole.
$3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{NH}_{3}(\mathrm{~g})$
The reaction quotient for this reaction is $Q_{2}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{H}_{2}\right]^{3}\left[\mathrm{~N}_{2}\right]}$
Q_{2} is equal to $Q_{1}{ }^{2}$.
17.12 Plan: Remember that $Q_{c}=\frac{[\mathrm{C}]^{c}[\mathrm{D}]^{d}}{[\mathrm{~A}]^{a}[\mathrm{~B}]^{b}}$ where A and B are reactants, C and D are products, and a, b, c, and d are the stoichiometric coefficients in the balanced equation.
Solution:
a) $4 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{~N}_{2} \mathrm{O}_{3}(\mathrm{~g})$

$$
Q_{\mathrm{c}}=\frac{\left[\mathrm{N}_{2} \mathrm{O}_{3}\right]^{2}}{[\mathrm{NO}]^{4}\left[\mathrm{O}_{2}\right]}
$$

b) $\mathrm{SF}_{6}(g)+2 \mathrm{SO}_{3}(g) \leftrightarrows 3 \mathrm{SO}_{2} \mathrm{~F}_{2}(g)$

$$
Q_{\mathrm{c}}=\frac{\left[\mathrm{SO}_{2} \mathrm{~F}_{2}\right]^{3}}{\left[\mathrm{SF}_{6}\right]\left[\mathrm{SO}_{3}\right]^{2}}
$$

c) $2 \mathrm{SC}_{1} \mathrm{~F}_{5}(g)+\mathrm{H}_{2}(g) \leftrightarrows \mathrm{S}_{2} \mathrm{~F}_{10}(g)+2 \mathrm{HCl}(g)$

$$
Q_{\mathrm{c}}=\frac{\left[\mathrm{S}_{2} \mathrm{~F}_{10}\right][\mathrm{HCl}]^{2}}{\left[\mathrm{SClF}_{5}\right]^{2}\left[\mathrm{H}_{2}\right]}
$$

17.13 a) $2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrows 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$$
Q_{\mathrm{c}}=\frac{\left[\mathrm{CO}_{2}\right]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}}{\left[\mathrm{C}_{2} \mathrm{H}_{6}\right]^{2}\left[\mathrm{O}_{2}\right]^{7}}
$$

b) $\mathrm{CH}_{4}(g)+4 \mathrm{~F}_{2}(g) \leftrightarrows \mathrm{CF}_{4}(g)+4 \mathrm{HF}(g)$

$$
Q_{\mathrm{c}}=\frac{\left[\mathrm{CF}_{4}\right][\mathrm{HF}]^{4}}{\left[\mathrm{CH}_{4}\right]\left[\mathrm{F}_{2}\right]^{4}}
$$

c) $2 \mathrm{SO}_{3}(g) \leftrightarrows 2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g)$

$$
Q_{\mathrm{c}}=\frac{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}{\left[\mathrm{SO}_{3}\right]^{2}}
$$

17.14 Plan: Remember that $Q_{\mathrm{c}}=\frac{[\mathrm{C}]^{c}[\mathrm{D}]^{d}}{[\mathrm{~A}]^{a}[\mathrm{~B}]^{b}}$ where A and B are reactants, C and D are products, and a, b, c, and d are the stoichiometric coefficients in the balanced equation.
Solution:
a) $2 \mathrm{NO}_{2} \mathrm{Cl}(g) \leftrightarrows 2 \mathrm{NO}_{2}(g)+\mathrm{Cl}_{2}(g)$

$$
Q_{\mathrm{c}}=\frac{\left[\mathrm{NO}_{2}\right]^{2}\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{NO}_{2} \mathrm{Cl}\right]^{2}}
$$

b) $2 \mathrm{POCl}_{3}(g) \leftrightarrows 2 \mathrm{PCl}_{3}(g)+\mathrm{O}_{2}(g)$

$$
Q_{\mathrm{c}}=\frac{\left[\mathrm{PCl}_{3}\right]^{2}\left[\mathrm{O}_{2}\right]}{\left[\mathrm{POCl}_{3}\right]^{2}}
$$

c) $4 \mathrm{NH}_{3}(g)+3 \mathrm{O}_{2}(g) \leftrightarrows 2 \mathrm{~N}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$$
Q_{\mathrm{c}}=\frac{\left[\mathrm{N}_{2}\right]^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}}{\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{3}}
$$

17.15
a) $3 \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{O}_{3}(\mathrm{~g})$

$$
Q_{\mathrm{c}}=\frac{\left[\mathrm{O}_{3}\right]^{2}}{\left[\mathrm{O}_{2}\right]^{3}}
$$

b) $\mathrm{NO}(g)+\mathrm{O}_{3}(\mathrm{~g}) \leftrightarrows \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

$$
Q_{\mathrm{c}}=\frac{\left[\mathrm{NO}_{2}\right]\left[\mathrm{O}_{2}\right]}{[\mathrm{NO}]\left[\mathrm{O}_{3}\right]}
$$

c) $\mathrm{N}_{2} \mathrm{O}(\mathrm{g})+4 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$$
Q_{\mathrm{c}}=\frac{\left[\mathrm{NH}_{3}\right]^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{N}_{2} \mathrm{O}\right]\left[\mathrm{H}_{2}\right]^{4}}
$$

17.16 Plan: Compare each equation with the reference equation to see how the direction and coefficients have changed. If a reaction has been reversed, the K value is the reciprocal of the K value for the reference reaction. If the coefficients have been changed by a factor n, the K value is equal to the original K value raised to the $n t h$ power.

Solution:

a) The K for the original reaction is $K_{\mathrm{c}}=\frac{\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{~S}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]^{2}}$

The given reaction $1 / 2 \mathrm{~S}_{2}(g)+\mathrm{H}_{2}(g) \leftrightarrows \mathrm{H}_{2} \mathrm{~S}(g)$ is the reverse reaction of the original reaction and the coefficients of the original reaction have been multiplied by a factor of $1 / 2$. The equilibrium constant for the reverse reaction is the reciprocal $(1 / K)$ of the original constant. The K value of the original reaction is raised to the $1 / 2$ power.

$$
\begin{aligned}
& K_{\mathrm{c}(\mathrm{a})}=\left(1 / K_{\mathrm{c}}\right)^{1 / 2}=\frac{\left[\mathrm{H}_{2} \mathrm{~S}\right]}{\left[\mathrm{S}_{2}\right]^{1 / 2}\left[\mathrm{H}_{2}\right]} \\
& K_{\mathrm{c}(\mathrm{a})}=\left(1 / 1.6 \times 10^{-2}\right)^{1 / 2}=7.90569=7.9
\end{aligned}
$$

b) The given reaction $5 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \leftrightarrows 5 \mathrm{H}_{2}(\mathrm{~g})+5 / 2 \mathrm{~S}_{2}(\mathrm{~g})$ is the original reaction multiplied by $5 / 2$. Take the original K to the $5 / 2$ power to find K of given reaction.

$$
\begin{aligned}
K_{\mathrm{c}(\mathrm{~b})}=\left(K_{\mathrm{c}}\right)^{5 / 2} & =\frac{\left[\mathrm{H}_{2}\right]^{5}\left[\mathrm{~S}_{2}\right]^{5 / 2}}{\left[\mathrm{H}_{2} \mathrm{~S}\right]^{-}} \\
K_{\mathrm{c}(\mathrm{~b})} & =\left(1.6 \times 10^{-2}\right)^{5 / 2}=3.23817 \times 10^{-5}=3.2 \times 10^{-5}
\end{aligned}
$$

$17.17 \quad K_{\mathrm{c}}=\frac{\left[\mathrm{N}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}{[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right]^{2}}$
a) $K_{\mathrm{c}(\mathrm{a})}=\left[K_{\mathrm{c}}\right]^{1 / 2}=\frac{\left[\mathrm{N}_{2}\right]^{1 / 2}\left[\mathrm{H}_{2} \mathrm{O}\right]}{[\mathrm{NO}]\left[\mathrm{H}_{2}\right]}$

$$
\text { Thus, } K_{\mathrm{c}(\mathrm{a})}=\left[K_{\mathrm{c}}\right]^{1 / 2}=\left(6.5 \times 10^{2}\right)^{1 / 2}=25.495=\mathbf{2 5}
$$

b) $K_{\mathrm{c}}=\left[K_{\mathrm{c}}\right]^{-2}=\frac{[\mathrm{NO}]^{4}\left[\mathrm{H}_{2}\right]^{4}}{\left[\mathrm{~N}_{2}\right]^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{4}}$

$$
K_{\mathrm{c}}=\left[K_{\mathrm{c}}\right]^{-2}=\left(6.5 \times 10^{2}\right)^{-2}=2.36686 \times 10^{-6}=\mathbf{2 . 4} \times \mathbf{1 0} 0^{-6}
$$

17.18 Plan: The concentration of solids and pure liquids do not change, so their concentration terms are not written in the reaction quotient expression. Remember that stoichiometric coefficients are used as exponents in the expression for the reaction quotient.
Solution:
a) $2 \mathrm{Na}_{2} \mathrm{O}_{2}(\mathrm{~s})+2 \mathrm{CO}_{2}(g) \leftrightarrows 2 \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})$

$$
Q_{\mathrm{c}}=\frac{\left[\mathrm{O}_{2}\right]}{\left[\mathrm{CO}_{2}\right]^{2}}
$$

b) $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrows \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$Q_{c}=\left[\mathrm{H}_{2} \mathrm{O}(g)\right] \quad$ Only the gaseous water is used. The " (g) " is for emphasis.
c) $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) \leftrightarrows \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(g)$
$Q_{\mathrm{c}}=\left[\mathrm{NH}_{3}\right][\mathrm{HCl}]$
17.19 a) $\mathrm{H}_{2} \mathrm{O}(l)+\mathrm{SO}_{3}(g) \leftrightarrows \mathrm{H}_{2} \mathrm{SO}_{4}(a q)$
$Q_{\mathrm{c}}=\frac{\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]}{\left[\mathrm{SO}_{3}\right]}$
b) $2 \mathrm{KNO}_{3}(\mathrm{~s}) \leftrightarrows 2 \mathrm{KNO}_{2}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})$
$Q_{\mathrm{c}}=\left[\mathrm{O}_{2}\right]$
c) $\mathrm{S}_{8}(\mathrm{~s})+24 \mathrm{~F}_{2}(\mathrm{~g}) \leftrightarrows 8 \mathrm{SF}_{6}(\mathrm{~g})$

$$
Q_{\mathrm{c}}=\frac{\left[\mathrm{SF}_{6}\right]^{8}}{\left[\mathrm{~F}_{2}\right]^{24}}
$$

17.20 Plan: The concentration of solids and pure liquids do not change, so their concentration terms are not written in the reaction quotient expression. Remember that stoichiometric coefficients are used as exponents in the expression for the reaction quotient.
Solution:
a) $2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \leftrightarrows \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$$
Q_{\mathrm{c}}=\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]
$$

b) $\mathrm{SnO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{Sn}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$$
Q_{\mathrm{c}}=\frac{\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}{\left[\mathrm{H}_{2}\right]^{2}}
$$

c) $\mathrm{H}_{2} \mathrm{SO}_{4}(l)+\mathrm{SO}_{3}(g) \leftrightarrows \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}(l)$

$$
Q_{\mathrm{c}}=\frac{1}{\left[\mathrm{SO}_{3}\right]}
$$

a) $2 \mathrm{Al}(s)+2 \mathrm{NaOH}(a q)+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrows 2 \mathrm{Na}\left[\mathrm{Al}(\mathrm{OH})_{4}\right](a q)+3 \mathrm{H}_{2}(g)$

$$
Q_{\mathrm{c}}=\frac{\left[\mathrm{Na}\left[\mathrm{Al}(\mathrm{OH})_{4}\right]\right]^{2}\left[\mathrm{H}_{2}\right]^{3}}{[\mathrm{NaOH}]^{2}}
$$

b) $\mathrm{CO}_{2}(\mathrm{~s}) \leftrightarrows \mathrm{CO}_{2}(\mathrm{~g})$
$Q_{\mathrm{c}}=\left[\mathrm{CO}_{2}(g)\right] \quad$ Only the gaseous carbon dioxide is used. The " (g) " is for emphasis.
c) $2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~s}) \leftrightarrows 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g})$

$$
Q_{\mathrm{c}}=\left[\mathrm{NO}_{2}\right]^{4}\left[\mathrm{O}_{2}\right]
$$

17.22 Write balanced chemical equations for each reaction, and then write the appropriate equilibrium expression.
a) $4 \mathrm{HCl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{Cl}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)$

$$
Q_{\mathrm{c}}=\frac{\left[\mathrm{Cl}_{2}\right]^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}{[\mathrm{HCl}]^{4}\left[\mathrm{O}_{2}\right]}
$$

b) $2 \mathrm{As}_{2} \mathrm{O}_{3}(\mathrm{~s})+10 \mathrm{~F}_{2}(\mathrm{~g}) \leftrightarrows 4 \mathrm{AsF}_{5}(\mathrm{l})+3 \mathrm{O}_{2}(g)$

$$
Q_{\mathrm{c}}=\frac{\left[\mathrm{O}_{2}\right]^{3}}{\left[\mathrm{~F}_{2}\right]^{10}}
$$

c) $\mathrm{SF}_{4}(g)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrows \mathrm{SO}_{2}(g)+4 \mathrm{HF}(g)$

$$
Q_{\mathrm{c}}=\frac{\left[\mathrm{SO}_{2}\right][\mathrm{HF}]^{4}}{\left[\mathrm{SF}_{4}\right]}
$$

d) $2 \mathrm{MoO}_{3}(\mathrm{~s})+6 \mathrm{XeF}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{MoF}_{6}(\mathrm{l})+6 \mathrm{Xe}(\mathrm{g})+3 \mathrm{O}_{2}(\mathrm{~g})$

$$
Q_{\mathrm{c}}=\frac{\left[\mathrm{Xe}^{6}\right]^{6}\left[\mathrm{O}_{2}\right]^{3}}{\left[\mathrm{XeF}_{2}\right]^{6}}
$$

17.23 Plan: Add the two equations, canceling substances that appear on both sides of the equation. Write the Q_{c} expression for each of the steps and for the overall equation. Since the individual steps are added, their Q_{c} 's are multiplied and common terms are canceled to obtain the overall Q_{c}.

Solution:
a) The balanced equations and corresponding reaction quotients are given below. Note the second equation must be multiplied by 2 to get the appropriate overall equation.

$$
\begin{array}{cc}
\text { (1) } \mathrm{Cl}_{2}(g)+\mathrm{F}_{2}(g) \quad \leftrightarrows 2 \mathrm{ClF}(g) & Q_{1}=\frac{[\mathrm{ClF}]^{2}}{\left[\mathrm{Cl}_{2}\right]\left[\mathrm{F}_{2}\right]} \\
\underline{(2) 2 \mathrm{CIF}(g)+2 \mathrm{~F}_{2}(g) \leftrightarrows 2 \mathrm{ClF}_{3}(g)} & Q_{2}=\frac{\left[\mathrm{ClF}_{3}\right]^{2}}{\left[\mathrm{ClF}^{2}\left[\mathrm{~F}_{2}\right]^{2}\right.} \\
\text { Overall: } \mathrm{Cl}_{2}(g)+3 \mathrm{~F}_{2}(g) \leftrightarrows 2 \mathrm{ClF}_{3}(g) & \\
Q_{\text {overall }}=\frac{\left[\mathrm{ClF}_{3}\right]^{2}}{\left[\mathrm{Cl}_{2}\right]\left[\mathrm{F}_{2}\right]^{3}}
\end{array}
$$

b) The reaction quotient for the overall reaction, $Q_{\text {overall }}$, determined from the reaction is:

$$
\begin{aligned}
& Q_{\text {overall }}=\frac{\left[\mathrm{ClF}_{3}\right]^{2}}{\left[\mathrm{Cl}_{2}\right]\left[\mathrm{F}_{2}\right]^{3}} \\
& Q_{\text {overall }}=Q_{1} Q_{2}{ }^{2}=\frac{[\mathrm{ClF}]^{2}}{\left[\mathrm{Cl}_{2}\right]\left[\mathrm{F}_{2}\right]} \times \frac{\left[\mathrm{ClF}_{3}\right]^{2}}{[\mathrm{ClF}]^{2}\left[\mathrm{~F}_{2}\right]^{2}}=\frac{\left[\mathrm{ClF}_{3}\right]^{2}}{\left[\mathrm{Cl}_{2}\right]\left[\mathrm{F}_{2}\right]^{3}}
\end{aligned}
$$

17.24 According to the ideal gas equation, $P V=n R T$. Concentration and pressure of gas are directly proportional as long as the temperature is constant: $C=n / V=P / R T$.
$17.25 K_{\mathrm{c}}$ and K_{p} are related by the equation $K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n}$, where Δn represents the change in the number of moles of gas in the reaction (moles gaseous products - moles gaseous reactants). When Δn is zero (no change in number of moles of gas), the term $(R T)^{\Delta n}$ equals 1 and $K_{\mathrm{c}}=K_{\mathrm{p}}$. When Δn is not zero, meaning that there is a change in the number of moles of gas in the reaction, then $K_{\mathrm{c}} \neq K_{\mathrm{p}}$.
17.26 a) $K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n}$. Since $\Delta n=$ number of moles gaseous products - number of moles gaseous reactants, Δn is a positive integer for this reaction. If Δn is a positive integer, then $(R T)^{\Delta n}$ is greater than 1 . Thus, K_{c} is multiplied by a number that is greater than 1 to give $K_{\mathrm{p}} . \boldsymbol{K}_{\mathbf{c}}$ is smaller than $\boldsymbol{K}_{\mathbf{p}}$.
b) Assuming that $R T>1$ (which occurs when $T>12.2 K$, because $0.0821(R) \times 12.2=1$), $\boldsymbol{K}_{\mathbf{p}}>\boldsymbol{K}_{\mathbf{c}}$ if the number of moles of gaseous products exceeds the number of moles of gaseous reactants. $K_{\mathrm{p}}<K_{\mathrm{c}}$ when the number of moles of gaseous reactants exceeds the number of moles of gaseous product.
17.27 Plan: $\Delta n_{\text {gas }}=$ moles gaseous products - moles gaseous reactants.

Solution:
a) Number of moles of gaseous reactants $=0$; number of moles of gaseous products $=3 ; \Delta n_{\text {gas }}=3-0=3$
b) Number of moles of gaseous reactants $=1$; number of moles of gaseous products $=0 ; \Delta n_{\text {gas }}=0-1=\mathbf{- 1}$
c) Number of moles of gaseous reactants $=0$; number of moles of gaseous products $=3 ; \Delta n_{\text {gas }}=3-0=\mathbf{3}$
17.28
a) $\Delta n_{\text {gas }}=\mathbf{1}$
b) $\Delta n_{\text {gas }}=-3$
c) $\Delta n_{\text {gas }}=\mathbf{1}$
17.29 Plan: First, determine Δn for the reaction and then calculate K_{c} using $K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n}$. Solution:
a) $\Delta n=$ moles gaseous products - moles gaseous reactants $=1-2=-1$

$$
K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n}
$$

$$
K_{\mathrm{c}}=\frac{K_{\mathrm{p}}}{(R T)^{\Delta n}}=\frac{3.9 \times 10^{-2}}{[(0.0821)(1000 .)]^{-1}}=3.2019=3.2
$$

b) $\Delta n=$ moles gaseous products - moles gaseous reactants $=1-1=0$

$$
K_{\mathrm{c}}=\frac{K_{\mathrm{p}}}{(R T)^{\Delta n}}=\frac{28.5}{[(0.0821)(500 .)]^{0}}=28.5
$$

17.30 First, determine Δn for the reaction and then calculate K_{c} using $K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n}$.
a) $\Delta n=$ moles gaseous products - moles gaseous reactants $=2-2=0$

$$
K_{\mathrm{c}}=\frac{K_{\mathrm{p}}}{(R T)^{\Delta n}}=\frac{49}{[(0.0821)(730 .)]^{0}}=49
$$

b) $\Delta n=$ moles gaseous products - moles gaseous reactants $=2-3=-1$

$$
K_{\mathrm{c}}=\frac{K_{\mathrm{p}}}{(R T)^{\Delta n}}=\frac{2.5 \times 10^{10}}{[(0.0821)(500 .)]^{-1}}=1.02625 \times 10^{12}=\mathbf{1 . 0} \times 10^{12}
$$

17.31 Plan: First, determine Δn for the reaction and then calculate K_{p} using $K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n}$.

Solution:
a) $\Delta n=$ moles gaseous products - moles gaseous reactants $=2-1=1$

$$
K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n}=\left(6.1 \mathrm{x} 10^{-3}\right)[(0.0821)(298)]^{1}=0.14924=\mathbf{0 . 1 5}
$$

b) $\Delta n=$ moles gaseous products - moles gaseous reactants $=2-4=-2$

$$
K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n}=\left(2.4 \times 10^{-3}\right)[(0.0821)(1000 .)]^{-2}=3.5606 \times 10^{-7}=\mathbf{3 . 6} \times 10^{-7}
$$

17.32 First, determine Δn for the reaction and then calculate K_{p} using $K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n}$.
a) $\Delta n=$ moles gaseous products - moles gaseous reactants $=2-2=0$

$$
K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n}=(0.77)[(0.0821)(1020 .)]^{0}=0.77
$$

b) $\Delta n=$ moles gaseous products - moles gaseous reactants $=2-3=-1$

$$
K_{\mathrm{p}}=K_{\mathrm{c}}(\mathrm{RT})^{\Delta n}=\left(1.8 \times 10^{-56}\right)[(0.0821)(570 .)]^{-1}=3.8464 \times 10^{-58}=\mathbf{3 . 8} \times 10^{-58}
$$

17.33 When $Q<K$, the reaction proceeds to the right to form more products. The reaction quotient and equilibrium constant are determined by [products]/[reactants]. For Q to increase and reach the value of K, the concentration of products (numerator) must increase in relation to the concentration of reactants (denominator).
17.34 a) The reaction is $2 \mathrm{D} \leftrightarrow \mathrm{E}$ and $K_{\mathrm{c}}=\frac{[\mathrm{E}]}{[\mathrm{D}]^{2}}$.

Concentration of $\mathrm{D}=$ Concentration of $\mathrm{E}=(3$ spheres $)\left(\frac{0.0100 \mathrm{~mol}}{1 \text { sphere }}\right)\left(\frac{1}{1.00 \mathrm{~L}}\right)=0.0300 \mathrm{M}$
$K_{\mathrm{c}}=\frac{[\mathrm{E}]}{[\mathrm{D}]^{2}}=\frac{[0.0300]}{[0.0300]^{2}}=33.3333=33.3$
b) In Scene B the concentrations of D and E are both $0.0300 \mathrm{~mol} / 0.500 \mathrm{~L}=0.0600 \mathrm{M}$
$Q_{\mathrm{c}}=\frac{[\mathrm{E}]}{[\mathrm{D}]^{2}}=\frac{[0.0600]}{[0.0600]^{2}}=16.66666=16.7$
B is not at equilibrium. Since $Q_{\mathrm{c}}<K_{\mathrm{c}}$, the reaction will proceed to the right.
In Scene C, the concentration of D is still 0.0600 M and the concentration of E is $0.0600 \mathrm{~mol} / 0.500 \mathrm{~L}=0.120 \mathrm{M}$
$Q_{\mathrm{c}}=\frac{[\mathrm{E}]}{[\mathrm{D}]^{2}}=\frac{[0.120]}{[0.0600]^{2}}=33.3333=33.3$
Since $Q_{\mathrm{c}}=K_{\mathrm{c}}$ in Scene C, the reaction is at equilibrium.
17.35 Plan: To decide if the reaction is at equilibrium, calculate Q_{p} and compare it to K_{p}. If $Q_{\mathrm{p}}=K_{\mathrm{p}}$, then the reaction is at equilibrium. If $Q_{p}>K_{p}$, then the reaction proceeds to the left to produce more reactants. If $Q_{p}<K_{p}$, then the reaction proceeds to the right to produce more products.

Solution:

$$
Q_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{H}_{2}} \mathrm{P}_{\mathrm{Br}_{2}}}{\mathrm{P}_{\mathrm{HBr}}^{2}}=\frac{(0.010)(0.010)}{(0.20)^{2}}=2.5 \times 10^{-3}>K_{\mathrm{p}}=4.18 \times 10^{-9}
$$

$Q_{\mathrm{p}}>K_{\mathrm{p}}$, thus, the reaction is not at equilibrium and will proceed to the left (towards the reactants). Thus, the numerator will decrease in size as products are consumed and the denominator will increase in size as more reactant is produced. Q_{p} will decrease until $Q_{\mathrm{p}}=K_{\mathrm{p}}$.
17.36
$Q_{\mathrm{p}}=\frac{P_{\mathrm{NO}}^{2} P_{\mathrm{Br}_{2}}}{P_{\mathrm{NOBr}}^{2}}=\frac{(0.10)^{2}(0.10)}{(0.10)^{2}}=0.10<K_{\mathrm{p}}=60.6$
$Q_{\mathrm{p}}<K_{\mathrm{p}}$ Thus, the reaction is not at equilibrium and will proceed to the right (towards the products).
17.37 There is insufficient information to calculate the partial pressures of each gas (T is not given). There is sufficient information to determine the concentrations and hence Q_{c}. Convert the K_{p} given to K_{c} using $K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n}$. Compare the Q_{c} to the K_{c} just calculated and make a prediction.
$\Delta n=$ moles gaseous products - moles gaseous reactants $=2-2=0$
Since $\Delta n=0, K_{\mathrm{p}}=K_{\mathrm{c}}=2.7$ (Note: If Δn had any other value, we could not finish the calculation without the temperature.)

$$
Q_{\mathrm{c}}=\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2} \mathrm{O}\right]}=\frac{[0.62 / 2.0][0.43 / 2.0]}{[0.13 / 2.0][0.56 / 2.0]}=3.662>K_{\mathrm{c}}=2.7
$$

$Q_{\mathrm{c}}>K_{\mathrm{c}}$ Thus, the reaction is not at equilibrium and will proceed to the left (towards the reactants).
17.38 At equilibrium, equal concentrations of CFCl_{3} and HCl exist, regardless of starting reactant concentrations. The equilibrium concentrations of CFCl_{3} and HCl would still be equal if unequal concentrations of CCl_{4} and HF were used. This occurs only when the two products have the same coefficients in the balanced equation. Otherwise, more of the product with the larger coefficient will be produced.
17.39 When x mol of CH_{4} reacts, 2 x mol of $\mathrm{H}_{2} \mathrm{O}$ also reacts to form x mol of CO_{2} and $4 \mathrm{x} \mathrm{mol} \mathrm{of} \mathrm{H}_{2}$. This is based on the 1:2:1:4 mole ratio in the reaction. The final (equilibrium) concentration of each reactant is the initial concentration minus the amount that reacts. The final (equilibrium) concentration of each product is the initial concentration plus the amount that forms.
17.40 a) The approximation applies when the change in concentration from initial to equilibrium is so small that it is insignificant. This occurs when K is small and initial concentration is large.
b) This approximation will not work when the change in concentration is greater than 5%. This can occur when [reactant $]_{\text {initial }}$ is very small, or when $[\text { reactant }]_{\text {change }}$ is relatively large due to a large K.
17.41 Plan: Since all equilibrium concentrations are given in molarities and the reaction is balanced, construct an equilibrium expression and substitute the equilibrium concentrations to find K_{c}.
Solution:

$$
K_{\mathrm{c}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}=\frac{\left[1.87 \times 10^{-3}\right]^{2}}{\left[6.50 \times 10^{-5}\right]\left[1.06 \times 10^{-3}\right]}=50.753=\mathbf{5 0 . 8}
$$

$17.42 \quad K_{\mathrm{c}}=\frac{\left[\mathrm{N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}{\left[\mathrm{NH}_{3}\right]^{2}}=\frac{[0.114][0.342]^{3}}{[0.0225]^{2}}=9.0077875=\mathbf{9 . 0 1}$
17.43 Plan: Calculate the initial concentration of PCl_{5} from the given number of moles and the container volume; the reaction is proceeding to the right, consuming PCl_{5} and producing products. There is a $1: 1: 1$ mole ratio between the reactants and products.
Solution:
Initial $\left[\mathrm{PCl}_{5}\right]=0.15 \mathrm{~mol} / 2.0 \mathrm{~L}=0.075 \mathrm{M}$
Since there is a 1:1:1 mole ratio in this reaction:
$\mathrm{x}=\left[\mathrm{PCl}_{5}\right]$ reacting $(-\mathrm{x})$, and the amount of PCl_{3} and of Cl_{2} forming $(+\mathrm{x})$.

Concentration (M)	$\mathrm{PCl}_{5}(\mathrm{~g})$	\leftrightarrows	$\mathrm{PCl}_{3}(\mathrm{~g})$	+	$\mathrm{Cl}_{2}(\mathrm{~g})$
Initial	0.075		0	0	
Change	-x		+X		+x
Equilibrium	$0.075-\mathrm{x}$		x	x	

17.44 The reaction table requires that the initial $\left[\mathrm{H}_{2}\right]$ and $\left[\mathrm{F}_{2}\right]$ be calculated: $\left[\mathrm{H}_{2}\right]=0.10 \mathrm{~mol} / 0.50 \mathrm{~L}=0.20 \mathrm{M}$; $\left[\mathrm{F}_{2}\right]=0.050 \mathrm{~mol} / 0.50 \mathrm{~L}=0.10 \mathrm{M}$.

$$
\mathrm{x}=\left[\mathrm{H}_{2}\right]=\left[\mathrm{F}_{2}\right] \text { reacting }(-\mathrm{x}) ; 2 \mathrm{x}=[\mathrm{HF}] \text { forming }(+2 \mathrm{x})
$$

Concentration (M)	$\mathrm{H}_{2}(g)$	$\mathrm{F}_{2}(g)$	\leftrightarrows	$2 \mathrm{HF}(g)$
Initial	0.20	0.10	0	
Change	-x	-x		+2 x
Equilibrium	$0.20-\mathrm{x}$		$0.10-\mathrm{x}$	2 x

17.45 Plan: Two of the three equilibrium pressures are known, as is K_{p}. Construct an equilibrium expression and solve for $P_{\text {NOCl }}$.
Solution:

$$
\begin{aligned}
& K_{\mathrm{p}}=6.5 \times 10^{4}=\frac{P_{\mathrm{NOCl}}^{2}}{P_{\mathrm{NO}}^{2} P_{\mathrm{Cl}_{2}}} \\
& 6.5 \times 10^{4}=\frac{P_{\mathrm{NOCl}}^{2}}{(0.35)^{2}(0.10)} \\
& P_{\mathrm{NOCl}}=\sqrt{\left(6.5 \times 10^{4}\right)(0.35)^{2}(0.10)}=28.2179=\mathbf{2 8} \mathbf{~ a t m}
\end{aligned}
$$

A high pressure for NOCl is expected because the large value of K_{p} indicates that the reaction proceeds largely to the right, i.e., to the formation of products.

$$
\begin{aligned}
\mathrm{C}(\mathrm{~s})+2 \mathrm{H}_{2}(g) & \leftrightarrows \mathrm{CH}_{4}(g) \\
K_{\mathrm{p}} & =\frac{P_{\mathrm{CH}_{4}}}{P_{\mathrm{H}_{2}}^{2}}=0.262 \\
P_{\mathrm{CH}_{4}} & =K_{\mathrm{p}} P_{\mathrm{H}_{2}}^{2}=(0.262)(1.22)^{2}=0.38996=\mathbf{0 . 3 9 0} \mathbf{a t m}
\end{aligned}
$$

17.47 Plan: Use the balanced equation to write an equilibrium expression and to define x . Set up a reaction table, substitute into the K_{p} expression, and solve for x.
Solution:

$$
\mathrm{NH}_{4} \mathrm{HS}(\mathrm{~s}) \leftrightarrows \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{NH}_{3}(\mathrm{~g})
$$

$\mathrm{x}=\left[\mathrm{NH}_{4} \mathrm{HS}\right]$ reacting $(-\mathrm{x})$, and the amount of $\mathrm{H}_{2} \mathrm{~S}$ and of NH_{3} forming $(+\mathrm{x})$ since there is a 1:1:1 mole ratio between the reactant and products.
(It is not necessary to calculate the molarity of $\mathrm{NH}_{4} \mathrm{HS}$ since, as a solid, it is not included in the equilibrium expression.)

Concentration (M)	$\mathrm{NH}_{4} \mathrm{HS}(\mathrm{s})$	\leftrightarrows	$\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$	+	$\mathrm{NH}_{3}(g)$
Initial	-		0	0	
Change	-x		+x		+x
Equilibrium	-		x		x

$$
\begin{aligned}
& K_{\mathrm{p}}=0.11=\left(P_{\mathrm{H}_{2} \mathrm{~S}}\right)\left(P_{\mathrm{NH}_{3}}\right) \quad \text { (The solid } \mathrm{NH}_{4} \mathrm{HS} \text { is not included.) } \\
& 0.11=(\mathrm{x})(\mathrm{x}) \\
& \mathrm{x}=P_{\mathrm{NH}_{3}}==0.33166=\mathbf{0 . 3 3} \mathbf{~ a t m} \\
& 2 \mathrm{H}_{2} \mathrm{~S}(g) \leftrightarrows 2 \mathrm{H}_{2}(g)+\mathrm{S}_{2}(g)
\end{aligned}
$$

$\left[\mathrm{H}_{2} \mathrm{~S}\right]=0.45 \mathrm{~mol} / 3.0 \mathrm{~L}=0.15 \mathrm{M}$					
Concentration (M)	$2 \mathrm{H}_{2} \mathrm{~S}(g)$	\leftrightarrows	$2 \mathrm{H}_{2}(g)$	+	$\mathrm{S}_{2}(g)$
Initial	0.15		0		0
Change	-2 x		+2 x	+x	
Equilibrium	$0.15-2 \mathrm{x}$		2 x	x	

$$
\begin{gathered}
K_{\mathrm{c}}=9.30 \times 10^{-8}=\frac{\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{~S}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]^{2}}=\frac{[2 \mathrm{x}]^{2}[\mathrm{x}]}{[0.15-2 \mathrm{x}]^{2}} \\
\text { Assuming } 0.15 M-2 \mathrm{x} \approx 0.15 \mathrm{M} \\
9.30 \times 10^{-8}=\frac{[2 \mathrm{x}]^{2}[\mathrm{x}]}{[0.15]^{2}}=\frac{4 \mathrm{x}^{3}}{0.15^{2}} \\
\mathrm{x}=8.0575 \times 10^{-4} M \\
{\left[\mathrm{H}_{2}\right]=2 \mathrm{x}=2\left(8.0575 \times 10^{-4} M\right)=1.6115 \times 10^{-3}=\mathbf{1 . 6 \times 1 0} \mathbf{x}^{-3} \boldsymbol{M}} \\
\text { (Since }\left(1.6 \times 10^{-3}\right) /(0.15)<0.05 \text {, the assumption is OK.) }
\end{gathered}
$$

17.49 Plan: Use the balanced equation to write an equilibrium expression. Find the initial concentration of each reactant from the given amounts and container volume, use the balanced equation to define x and set up a reaction table, substitute into the equilibrium expression, and solve for x , from which the concentration of NO is calculated.
Solution:
The initial concentrations of N_{2} and O_{2} are $(0.20 \mathrm{~mol} / 1.0 \mathrm{~L})=0.20 \mathrm{M}$ and $(0.15 \mathrm{~mol} / 1.0 \mathrm{~L})=0.15 \mathrm{M}$, respectively.

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{NO}(\mathrm{~g}) \quad \text { There is a 1:1:2 mole ratio between reactants and products. }
$$

Assume $0.20 M-\mathrm{x} \approx 0.20 M$ and $0.15 M-\mathrm{x} \approx 0.15 M$
$4.10 \times 10^{-4}=\frac{4 \mathrm{x}^{2}}{[0.20][0.15]}$
$\mathrm{x}=1.753568 \times 10^{-3} \mathrm{M}$
$[\mathrm{NO}]=2 \mathrm{x}=2\left(1.753568 \times 10^{-3} M\right)=3.507136 \times 10^{-3}=3.5 \times 10^{-3} \boldsymbol{M}$
(Since $\left(1.8 \times 10^{-3}\right) /(0.15)<0.05$, the assumption is OK.)
$2 \mathrm{NO}_{2}(g) \leftrightarrows 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g)$

Pressure (atm)	$2 \mathrm{NO}_{2}(\mathrm{~g})$	\leftrightarrows	$2 \mathrm{NO}(g)$	+	$\mathrm{O}_{2}(\mathrm{~g})$
Initial	0.75		0		0
Change	- 2x		+2x		+x
Equilibrium	$0.75-2 \mathrm{x}$		2x		X
p	$=\frac{P_{\mathrm{NO}}^{2} P_{\mathrm{O}_{2}}}{P_{\mathrm{NO}_{2}}^{2}}$	(2x)			

Assume $0.75 \mathrm{~atm}-2 \mathrm{x} \approx 0.75 \mathrm{~atm}$

$$
4.48 \times 10^{-13}=\frac{\left(4 x^{2}\right)(x)}{(0.75)^{2}}=\frac{\left(4 x^{3}\right)}{(0.75)^{2}}
$$

$$
\mathrm{x}=3.979 \times 10^{-5} \mathrm{~atm}=4.0 \times 10^{-5} \mathrm{~atm} \mathbf{O}_{2}
$$

$$
P_{\mathrm{NO}}=2 \mathrm{x}=2\left(3.979 \times 10^{-5} \mathrm{~atm}\right)=7.958 \times 10^{-5}=\mathbf{8 . 0 \times 1 0 ^ { - 5 }} \mathbf{a t m} \mathbf{N O}
$$

17.51 Plan: Find the initial concentration of each reactant and product from the given amounts and container volume, use the balanced equation to define x , and set up a reaction table. The equilibrium concentration of H_{2} is known, so x can be calculated and used to find the other equilibrium concentrations.

Solution:
Initial concentrations:

$$
\begin{aligned}
& {[\mathrm{HI}]=(0.0244 \mathrm{~mol}) /(1.50 \mathrm{~L})=0.0162667 \mathrm{M}} \\
& {\left[\mathrm{H}_{2}\right]=(0.00623 \mathrm{~mol}) /(1.50 \mathrm{~L})=0.0041533 \mathrm{M}} \\
& {\left[\mathrm{I}_{2}\right]=(0.00414 \mathrm{~mol}) /(1.50 \mathrm{~L})=0.00276 \mathrm{M}}
\end{aligned}
$$

$2 \mathrm{HI}(g) \leftrightarrows \quad \mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \quad$ There is a 2:1:1 mole ratio between reactants and products.

$$
\begin{aligned}
& {\left[\mathrm{H}_{2}\right]_{\mathrm{eq}}=0.00467=0.0041533+\mathrm{x}} \\
& \mathrm{x}=0.0005167 \mathrm{M} \\
& {\left[\mathrm{I}_{2}\right]_{\mathrm{eq}}=0.00276+\mathrm{x}=0.00276+0.0005167=0.0032767=\mathbf{0 . 0 0 3 2 8} \boldsymbol{M} \mathbf{I}_{\mathbf{2}}} \\
& {[\mathrm{HI}]_{\mathrm{eq}}=0.0162667-2 \mathrm{x}=0.0162667-2(0.0005167)=0.0152333=\mathbf{0 . 0 1 5} \mathbf{M} \mathbf{~ H I}}
\end{aligned}
$$

17.52 Initial concentrations:

$$
\begin{aligned}
& {[\mathrm{A}]=\left(1.75 \times 10^{-3} \mathrm{~mol}\right) /(1.00 \mathrm{~L})=1.75 \times 10^{-3} \mathrm{M}} \\
& {[\mathrm{~B}]=\left(1.25 \times 10^{-3} \mathrm{~mol}\right) /(1.00 \mathrm{~L})=1.25 \times 10^{-3} \mathrm{M}} \\
& {[\mathrm{C}]=\left(6.50 \times 10^{-4} \mathrm{~mol}\right) /(1.00 \mathrm{~L})=6.50 \times 10^{-4} \mathrm{M}}
\end{aligned}
$$

$[\mathrm{A}]_{\mathrm{eq}}=2.15 \times 10^{-3}=1.75 \times 10^{-3}-\mathrm{x}$

$$
x=-0.00040
$$

$[B]_{\text {eq }}=1.25 \times 10^{-3}+2 \mathrm{x}=4.5 \times 10^{-4} \boldsymbol{M}$
$[\mathrm{C}]_{\mathrm{eq}}=6.50 \times 10^{-4}+\mathrm{x}=2.5 \times 10^{-4} \mathrm{M}$
17.53 Plan: Use the balanced equation to write an equilibrium expression. Find the initial concentration of ICl from the given amount and container volume, use the balanced equation to define x and set up a reaction table, substitute into the equilibrium expression, and solve for x , from which the equilibrium concentrations can be calculated.
Solution:

$[\mathrm{ICl}]_{\text {init }}=$				
Concentration $(0.500 \mathrm{~mol} / 5.00 \mathrm{~L})=0.100$	M			
Initial	$2 \mathrm{ICl}(g)$	\leftrightarrows	$\mathrm{I}_{2}(g)$	+
Change	0.100		0	$\mathrm{Cl}_{2}(g)$
Equilibrium	-2 x		+x	0

$$
K_{\mathrm{c}}=0.110=\frac{\left[\mathrm{I}_{2}\right]\left[\mathrm{Cl}_{2}\right]}{[\mathrm{ICl}]^{2}}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.100-2 \mathrm{x}]^{2}}
$$

$$
0.110=\frac{[\mathrm{x}]^{2}}{[0.100-2 \mathrm{x}]^{2}}
$$

Take the square root of each side:

$$
\begin{aligned}
& 0.331662=\frac{[\mathrm{x}]}{[0.100-2 \mathrm{x}]} \\
& \mathrm{x}=0.0331662-0.663324 \mathrm{x} \\
& 1.663324 \mathrm{x}=0.0331662
\end{aligned}
$$

$$
x=0.0199397
$$

$\left[\mathbf{I}_{2}\right]_{\text {eq }}=\left[\mathbf{C l}_{2}\right]_{\text {eq }}=\mathrm{x}=0.0199397=\mathbf{0 . 0 2 0 0} \mathbf{M}$
$[\mathbf{I C l}]_{\text {eq }}=0.100-2 \mathrm{x}=0.100-2(0.0199397)=0.0601206=\mathbf{0 . 0 6 0} \mathbf{M ~ I C l}$
$17.54 \begin{array}{ll}\text { Concentration }(M) & \mathrm{SCl}_{2}(g) \\ \text { Initial } & +\underset{0}{2 \mathrm{C}_{2} \mathrm{H}_{4}(g)} \underset{0.973}{ } \quad \leftrightarrows \\ \mathrm{~S}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)_{2}(g)\end{array}$

Initial	0.675	0.973	0
Change	-x	-2 x	+x
Equilibrium	$0.675-\mathrm{x}$	$0.973-2 \mathrm{x}$	x

$\left[\mathrm{S}_{\left.\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)_{2}\right]_{\text {eq }}=\mathrm{x}=0.350 \mathrm{M}}\right.$
$\left[\mathrm{SCl}_{2}\right]_{\text {eq }}=0.675-\mathrm{x}=0.675-0.350==0.325 \mathrm{M}$
$\left[\mathrm{C}_{2} \mathrm{H}_{4}\right]_{\mathrm{eq}}=0.973-2 \mathrm{x}=0.973-2(0.350)=0.273 \mathrm{M}$
$K_{\mathrm{c}}=\frac{\left[\mathrm{S}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)_{2}\right]}{\left[\mathrm{SCl}_{2}\right]\left[\mathrm{C}_{2} \mathrm{H}_{4}\right]^{2}}=\frac{[0.350]}{[0.325][0.273]^{2}}=14.4497$
$K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n} \quad \Delta n=1 \mathrm{~mol}-3 \mathrm{~mol}=-2$
$K_{\mathrm{p}}=(14.4497)[(0.0821)(273.2+20.0)]^{-2}=0.0249370=\mathbf{0 . 0 2 4 9}$
17.55 Plan: Use the balanced equation to write an equilibrium expression. Find the initial concentration of each reactant from the given amounts and container volume, use the balanced equation to define x, and set up a reaction table. The equilibrium concentration of N_{2} is known, so x can be calculated and used to find the other equilibrium concentrations. Substitute the equilibrium concentrations into the equilibrium expression to find K_{c}.
Solution:
$4 \mathrm{NH}_{3}(g)+3 \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{~N}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Initial $\left[\mathrm{NH}_{3}\right]=\operatorname{Initial}\left[\mathrm{O}_{2}\right]=(0.0150 \mathrm{~mol}) /(1.00 \mathrm{~L})=0.0150 \mathrm{M}$

Concentration (M)	$4 \mathrm{NH}_{3}(g)$	+	$3 \mathrm{O}_{2}(g)$	\leftrightarrows	$2 \mathrm{~N}_{2}(g)$	+
Initial	0.0150		0.0150		6	0
Change	-4 x	-3 x		$0 \mathrm{O}(g)$		
Equilibrium	$0.0150-4$		$0.0150-3 \mathrm{x}$		+2 x	+6 x

$\left[\mathrm{N}_{2}\right]_{\text {eq }}=2 \mathrm{x}=1.96 \times 10^{-3} \mathrm{M}$
$\mathrm{x}=\left(1.96 \times 10^{-3} \mathrm{M}\right) / 2=9.80 \times 10^{-4} \mathrm{M}$
$\left[\mathrm{H}_{2} \mathrm{O}\right]_{\text {eq }}=6 \mathrm{x}=6\left(9.80 \times 10^{-4}\right)=5.8800 \times 10^{-3} M$
$\left[\mathrm{NH}_{3}\right]_{\mathrm{eq}}=0.0150-4 \mathrm{x}=0.0150-4\left(9.80 \times 10^{-4}\right)=1.1080 \times 10^{-2} \mathrm{M}$
$\left[\mathrm{O}_{2}\right]_{\mathrm{eq}}=0.0150-3 \mathrm{x}=0.0150-3\left(9.80 \times 10^{-4}\right)=1.2060 \times 10^{-2} \mathrm{M}$
$K_{\mathrm{c}}=\frac{\left[\mathrm{N}_{2}\right]^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}}{\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{3}}=\frac{\left[1.96 \times 10^{-3}\right]^{2}\left[5.8800 \times 10^{-3}\right]^{6}}{\left[1.1080 \times 10^{-2}\right]^{4}\left[1.2060 \times 10^{-2}\right]^{3}}=6.005859 \times 10^{-6}=6.01 \times 10^{-6}$

17.56	Pressure (atm)	$\mathrm{FeO}(\mathrm{s})$	+	$\mathrm{CO}(\mathrm{g})$	\leftrightarrows	$\mathrm{Fe}(\mathrm{s})$	+	$\mathrm{CO}_{2}(\mathrm{~g})$
	Initial	-		1.00		-		0
	Change			-x				+x
	Equilibrium			$1.00-\mathrm{x}$				x

$K_{\mathrm{p}}=\frac{P_{\mathrm{CO}_{2}}}{P_{\mathrm{CO}}}=0.403=\frac{\mathrm{x}}{1.00-\mathrm{x}}$
$\mathrm{x}=0.28724=0.287 \mathrm{~atm} \mathrm{CO}_{2}$
$1.00-\mathrm{x}=1.00-0.28724=0.71276=\mathbf{0 . 7 1} \mathbf{~ a t m ~ C O}$
17.57 A change in equilibrium conditions such as a change in concentration of a component, a change in pressure (volume), or a change in temperature.
17.58 Equilibrium position refers to the specific concentrations or pressures of reactants and products that exist
at equilibrium, whereas equilibrium constant refers to the overall ratio of equilibrium concentrations and not to specific concentrations. Changes in reactant concentration cause changes in the specific equilibrium concentrations of reactants and products (equilibrium position), but not in the equilibrium constant.
17.59 A positive ΔH_{rxn} indicates that the reaction is endothermic, and that heat is consumed in the reaction:

$$
\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{~s})+\text { heat } \leftrightarrows \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{~g})
$$

a) The addition of heat (high temperature) causes the reaction to proceed to the right to counterbalance the effect of the added heat. Therefore, more products form at a higher temperature and container (B) with the largest number of product molecules best represents the mixture.
b) When heat is removed (low temperature), the reaction shifts to the left to produce heat to offset that disturbance. Therefore, NH_{3} and HCl molecules combine to form more reactant and container (A) with the smallest number of product gas molecules best represents the mixture.
17.60 Equilibrium component concentration values may change but the mass action expression of these concentrations is a constant as long as temperature remains constant. Changes in component amounts, pressures (volumes), or addition of a catalyst will not change the value of the equilibrium constant.
17.61 a) Rate $_{f}=k_{f}[\text { reactants }]^{x}$. An increase in reactant concentration shifts the equilibrium to the right by increasing the initial forward rate. Since $K_{\text {eq }}=k_{\mathrm{f}} / k_{\mathrm{r}}$ and k_{f} and k_{r} are not changed by changes in concentration, K_{eq} remains constant.
b) A decrease in volume causes an increase in concentrations of gases. The reaction rate for the formation of fewer moles of gases is increased to a greater extent. Again, the k_{f} and k_{r} values are unchanged.
c) An increase in temperature increases k_{r} to a greater extent for an exothermic reaction and thus lowers the $K_{\text {eq }}$ value.
d) An endothermic reaction can be written as: reactants + heat \leftrightarrows products. A rise in temperature (increase in heat) favors the forward direction of the reaction, i.e., the formation of products and consumption of reactants. Since $K=$ [products]/[reactants], the addition of heat increases the numerator and decreases the denominator, making K_{2} larger than K_{1}.
17.62 $\mathrm{XY}(s) \leftrightarrows \mathrm{X}(\mathrm{g})+\mathrm{Y}(\mathrm{s}) \quad$ Since product Y is a solid substance, addition of solid Y has no effect on the equilibrium position (as long as some Y is present). Scene \mathbf{A} best represents the system at equilibrium after the addition of two formula units of Y . More Y is present but the amounts of X and XY do not change.
17.63 Plan: If the concentration of a substance in the reaction increases, the equilibrium position will shift to consume some of it. If the concentration of a substance in the reaction decreases, the equilibrium position will shift to produce more of it.
Solution:
a) Equilibrium position shifts towards products. Adding a reactant (CO) causes production of more products as the system will act to reduce the increase in reactant by proceeding toward the product side, thereby consuming additional CO.
b) Equilibrium position shifts towards products. Removing a product $\left(\mathrm{CO}_{2}\right)$ causes production of more products as the system acts to replace the removed product.
c) Equilibrium position does not shift. The amount of a solid reactant or product does not impact the equilibrium as long as there is some solid present.
d) Equilibrium position shifts towards reactants. When product is added, the system will act to reduce the increase in product by proceeding toward the reactant side, thereby consuming additional CO_{2}; dry ice is solid carbon dioxide that sublimes to carbon dioxide gas. At very low temperatures, CO_{2} solid will not sublime, but since the reaction lists carbon dioxide as a gas, the assumption that sublimation takes place is reasonable.
17.64 a) no change
b) no change
c) shifts towards the products
d) shifts towards the reactants
17.65 Plan: An increase in container volume results in a decrease in pressure (Boyle's law). Le Châtelier’s principle states that the equilibrium will shift in the direction that forms more moles of gas to offset the decrease in pressure.
Solution:
a) More \mathbf{F} forms (two moles of gas) and less \mathbf{F}_{2} (one mole of gas) is present as the reaction shifts towards the right.
b) More $\mathbf{C}_{2} \mathbf{H}_{2}$ and \mathbf{H}_{2} form (four moles of gas) and less $\mathbf{C H}_{\mathbf{4}}$ (two moles of gas) is present as the reaction shifts towards the right.
17.66 a) less $\mathbf{C H}_{3} \mathbf{O H}(I)$; more $\mathbf{C H}_{3} \mathbf{O H}(g)$
b) less $\mathbf{C H}_{4}$ and NH_{3}; more $\mathbf{H C N}$ and H_{2}
17.67 Plan: Decreasing container volume increases the pressure (Boyle’s law). Le Châtelier’s principle states that the equilibrium will shift in the direction that forms fewer moles of gas to offset the increase in pressure.
Solution:
a) There are two moles of reactant gas $\left(\mathrm{H}_{2}\right.$ and $\left.\mathrm{Cl}_{2}\right)$ and two moles of product gas (HCl). Since there is the same number of reactant and product gas moles, there is no effect on the amounts of reactants or products.
b) There are three moles of reactant gases $\left(\mathrm{H}_{2}\right.$ and $\left.\mathrm{O}_{2}\right)$ and zero moles of product gas. The reaction will shift to
right to produce fewer moles of gas to offset the increase in pressure. \mathbf{H}_{2} and \mathbf{O}_{2} will decrease from their initial values before the volume was changed. More $\mathbf{H}_{2} \mathbf{O}$ will form because of the shift in equilibrium position.
17.68 a) more CO_{2} and $\mathrm{H}_{2} \mathrm{O}$; less $\mathrm{C}_{3} \mathrm{H}_{8}$ and O_{2}
b) more NH_{3} and O_{2}; less N_{2} and $\mathrm{H}_{2} \mathrm{O}$
17.69 Plan: The purpose of adjusting the volume is to cause a shift in equilibrium to the right for increased product yield. Increasing the volume of the container results in a shift in the direction that forms more moles of gas, while decreasing the container volume results in a shift in the direction that forms fewer moles of gas.
Solution:
a) Because the number of reactant gaseous moles $\left(4 \mathrm{H}_{2}\right)$ equals the product gaseous moles $\left(4 \mathrm{H}_{2} \mathrm{O}\right)$, a change in volume will have no effect on the yield.
b) The moles of gaseous product (2CO) exceed the moles of gaseous reactant $\left(1 \mathrm{O}_{2}\right)$. A decrease in pressure favors the reaction direction that forms more moles of gas, so increase the reaction vessel volume.
$\begin{array}{ll}\text { a) increase volume } & \text { b) decrease volume }\end{array}$

Plan: An increase in temperature (addition of heat) causes a shift in the equilibrium away from the side of the reaction with heat. Recall that a negative value of $\Delta H_{\mathrm{rxn}}^{\circ}$ indicates an exothermic reaction, while a positive value of $\Delta H_{\mathrm{rxn}}^{\circ}$ indicates an endothermic reaction.
Solution:
a) $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})+$ heat $\quad \Delta H_{\mathrm{rxn}}^{\circ}=-90.7 \mathrm{~kJ}$

The reaction is exothermic, so heat is written as a product. The equilibrium shifts to the left, away from heat, towards the reactants, so amount of product decreases.
b) $\mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(g)+$ heat $\leftrightarrows \mathrm{CO}(g)+\mathrm{H}_{2}(g) \quad \Delta H_{\mathrm{rxn}}^{\circ}=131 \mathrm{~kJ}$

The reaction is endothermic, so heat is written as a reactant. The equilibrium shifts to the right, away from heat, towards the products, so amounts of products increase.
c) $2 \mathrm{NO}_{2}(g)$ + heat $\leftrightarrows 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g)$

The reaction is endothermic, so heat is written as a reactant. The equilibrium shifts to the right, away from heat, towards the product, so amounts of products increase.
d) $2 \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{CO}(\mathrm{g})+$ heat

The reaction is exothermic, so heat is written as a product. The equilibrium shifts to the left, away from heat, towards the reactants; amount of product decreases.
17.72
a) decrease
b) decrease
c) decrease
d) increase
17.73 Plan: The van't Hoff equation shows how the equilibrium constant is affected by a change in temperature. Substitute the given variables into the equation and solve for K_{2}. Convert $\Delta H_{\mathrm{rxn}}^{\circ}$ from units of $\mathrm{kJ} / \mathrm{mol} \mathrm{DH}$ to units of J/2 mol DH.
Solution:

$$
\begin{aligned}
& K_{298}=K_{1}=1.80 \quad T_{1}=298 \mathrm{~K} \\
& K_{500}=K_{2}=\text { ? } \quad T_{2}=500 . \mathrm{K} \quad R=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K} \\
& \Delta H_{\mathrm{rxn}}^{\circ}=\left(\frac{0.32 \mathrm{~kJ}}{1 \mathrm{~mol} \mathrm{DH}}\right)(2 \mathrm{~mol} \mathrm{DH})\left(\frac{10^{3} \mathrm{~J}}{1 \mathrm{~kJ}}\right)=6.4 \times 10^{2} \mathrm{~J} \\
& \ln \frac{K_{2}}{K_{1}}=-\frac{\Delta H_{\mathrm{rxn}}^{\circ}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right) \\
& \ln \frac{K_{2}}{1.80}=-\frac{6.4 \times 10^{2} \mathrm{~J}}{8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}}\left(\frac{1}{500 . \mathrm{K}}-\frac{1}{298 \mathrm{~K}}\right) \\
& \ln \frac{K_{2}}{1.80}=0.104360 \\
& \frac{K_{2}}{1.80}=1.110 \\
& K_{2}=(1.80)(1.110)=1.998=2.0
\end{aligned}
$$

17.74 The van't Hoff equation shows how the equilibrium constant is affected by a change in temperature. Substitute the given variables into the equation and solve for K_{2}.

$$
\left.\left.\begin{array}{ll}
K_{298}=K_{1}=2.25 \times 10^{4} & T_{1}=298 \mathrm{~K}
\end{array} \quad \begin{array}{l}
\Delta H_{\mathrm{rxn}}^{\circ}=-128 \mathrm{~kJ} / \mathrm{mol} \\
K_{0}=K_{2}=? \\
\Delta H_{\mathrm{rxn}}^{\circ}=(-128 \mathrm{~kJ} / \mathrm{mol})\left(10^{3} \mathrm{~J} / 1 \mathrm{~kJ}\right)=-1.28 \times 10^{5} \mathrm{~J}
\end{array}\right] \begin{array}{l}
R=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}
\end{array}\right] \begin{aligned}
& \ln \frac{K_{2}}{K_{1}}=-\frac{\Delta H_{\mathrm{rxn}}^{\circ}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right) \\
& \ln \frac{K_{2}}{2.25 \times 10^{4}}=-\frac{-1.28 \times 10^{5} \mathrm{~J}}{8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}}\left(\frac{1}{273 \mathrm{~K}}-\frac{1}{298 \mathrm{~K}}\right) \\
& \ln \frac{K_{2}}{2.25 \times 10^{4}}=4.731088 \\
& \frac{K_{2}}{2.25 \times 10^{4}}=1.134189 \times 10^{2} \\
& K_{2}=\left(2.25 \times 10^{4}\right)\left(1.134189 \times 10^{2}\right)=2.551925 \times 10^{6}=\mathbf{2 . 5 5 \times 1 0 ^ { 6 }}
\end{aligned}
$$

$4 \mathrm{Fe}_{3} \mathrm{O}_{4}(s)+\mathrm{O}_{2}(g) \leftrightarrows 6 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \quad K_{\mathrm{p}}=2.5 \times 10^{87}$ at 298 K
a) $K_{\mathrm{p}}=\frac{1}{P_{\mathrm{O}_{2}}}=2.5 \times 10^{87}$

$$
P_{\mathrm{O}_{2}}=4.0 \times 10^{-88} \mathrm{~atm}
$$

b) $Q_{\mathrm{p}}=\frac{1}{P_{\mathrm{O}_{2}}}=1 /(0.21)=4.7619$
$K_{\mathrm{p}}>Q_{\mathrm{p}}$ thus, the reaction will proceed to the right.
c) $K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n}$

$$
\begin{aligned}
& K_{\mathrm{c}}=K_{\mathrm{p}} /(R T)^{\Delta n} \quad \Delta n=0-1=-1 \\
& K_{\mathrm{c}}=\left(2.5 \times 10^{87}\right) /[(0.0821)(298)]^{-1}=6.11645 \times 10^{88}=\mathbf{6 . 1}^{10} \mathbf{x 1 0}^{88}
\end{aligned}
$$

17.76

Plan: An increase in temperature (addition of heat) causes a shift in the equilibrium away from the side of the reaction with heat, while a decrease in temperature (removal of heat) causes a shift in the equilibrium towards the
side with heat. Increasing the volume of the container (pressure decreases) results in a shift in the direction that forms more moles of gas, while decreasing the container volume (pressure increases) results in a shift in the direction that forms fewer moles of gas. Adding a reactant causes a shift in the direction of products.

Solution:
a) $\mathrm{SO}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \leftrightarrows \mathrm{SO}_{3}(g)+$ heat

The forward reaction is exothermic ($\Delta H_{\mathrm{rxn}}^{\circ}$ is negative), so it is favored by lower temperatures. Lower temperatures will cause a shift to the right, the heat side of the reaction. There are fewer moles of gas as products $\left(1 \mathrm{SO}_{3}\right)$ than as reactants $\left(1 \mathrm{SO}_{2}(g)+1 / 2 \mathrm{O}_{2}\right)$, so products are favored by higher pressure. High pressure will cause a shift in equilibrium to the side with the fewer moles of gas.
b) Addition of O_{2} would decrease \boldsymbol{Q} since $Q=\frac{\left[\mathrm{SO}_{3}\right]}{\left[\mathrm{SO}_{2}\right]\left[\mathrm{O}_{2}\right]^{1 / 2}}$, and have no impact on \boldsymbol{K}.
c) To enhance yield of SO_{3}, a low temperature is used. Reaction rates are slower at lower temperatures, so a catalyst is used to speed up the reaction.

$$
\begin{aligned}
& 3 \mathrm{H}_{2}(g)+\mathrm{N}_{2}(g) \leftrightarrows 2 \mathrm{NH}_{3}(g) \\
& P_{\mathrm{NH}_{3}}=(41.49 \% / 100 \%)(110 . \mathrm{atm})=45.639 \mathrm{~atm} \\
& 100.00 \%-41.49 \%=58.51 \% \mathrm{~N}_{2}+\mathrm{H}_{2} \\
& P_{\mathrm{H}_{2}}+P_{\mathrm{N}_{2}}=(58.51 \% / 100 \%)(110 \mathrm{~atm})=64.361 \mathrm{~atm} \\
& P_{\mathrm{H}_{2}}=(3 / 4)(64.361 \mathrm{~atm})=48.27075 \mathrm{~atm} \\
& P_{\mathrm{N}_{2}}=(1 / 4)(64.361 \mathrm{~atm})=16.09025 \mathrm{~atm} \\
& K_{\mathrm{p}}=\frac{\left(P_{\mathrm{NH}_{3}}\right)^{2}}{\left(P_{\mathrm{H}_{2}}\right)^{3}\left(P_{\mathrm{N}_{2}}\right)}=\frac{(45.639)^{2}}{(48.27075)^{3}(16.09025)}=1.15095 \times 10^{-3}=\mathbf{1 . 1 5 \times 1 0 ^ { - 3 }}
\end{aligned}
$$

$$
\begin{aligned}
& K_{\mathrm{p}}=\frac{\left(P_{\mathrm{NH}_{3}}\right)^{2}}{\left(P_{\mathrm{N}_{2}}\right)\left(P_{\mathrm{H}_{2}}\right)^{3}}=1.00 \times 10^{-4} \\
& K_{\mathrm{p}}=\frac{(50 .)^{2}}{(\mathrm{x})(3 \mathrm{x})^{3}}=1.00 \times 10^{-4} \\
& \mathrm{x}=31.02016=\mathbf{3 1} \mathbf{~ a t m ~} \mathbf{N}_{2} \\
& 3 \mathrm{x}=3(31.02016)=93.06049=\mathbf{9 3} \mathbf{~ a t m} \mathbf{H}_{2} \\
& \mathrm{P}_{\text {total }}=\mathrm{P}_{\text {nitrogen }}+\mathrm{P}_{\text {hydrogen }}+\mathrm{P}_{\text {ammonia }}=(31.02016 \mathrm{~atm})+(93.06049 \mathrm{~atm})+(50 . \mathrm{atm}) \\
& =174.08065=\mathbf{1 7 4} \mathbf{~ a t m} \text { total }
\end{aligned}
$$

b) The mole ratio $\mathrm{H}_{2}: \mathrm{N}_{2}=6: 1$; at equilibrium, if $\mathrm{N}_{2}=\mathrm{x}, \mathrm{H}_{2}=6 \mathrm{x} ; \mathrm{P}_{\mathrm{NH}_{3}}=50$. atm

$$
\begin{aligned}
& K_{\mathrm{p}}=\frac{(50 .)^{2}}{(\mathrm{x})(6 \mathrm{x})^{3}}=1.00 \times 10^{-4} \\
& \mathrm{x}=18.445=\mathbf{1 8} \mathbf{~ a t m ~ \mathbf { N } _ { 2 }} \\
& 6 \mathrm{x}=6(18.445)=110.67=\mathbf{1 1 1 ~ a t m ~} \mathbf{H}_{2} \\
& \mathrm{P}_{\text {total }}=\mathrm{P}_{\text {nitrogen }}+\mathrm{P}_{\text {hydrogen }}+\mathrm{P}_{\text {ammonia }}=(18.445 \mathrm{~atm})+(110.67 \mathrm{~atm})+(50 . \mathrm{atm}) \\
& =179.115=\mathbf{1 7 9} \mathbf{~ a t m} \text { total }
\end{aligned}
$$

This is not a valid argument. The total pressure in b) is greater than in a) to produce the same amount of NH_{3}.
17.79 a) More $\mathbf{C a C O}_{3}$. Because the forward reaction is exothermic, decreasing the temperature will cause an increase in the amount of CaCO_{3} formed as the reaction shifts to the right to produce more heat.
b) Less $\mathbf{C a C O}_{3}$. The only gas in the equation is a reactant. Increasing the volume (decreasing the pressure) will cause the equilibrium to shift toward the reactant side and the amount of CaCO_{3} formed decreases.
c) More CaCO_{3}. Increasing the partial pressure of CO_{2} will cause more CaCO_{3} to be formed as the reaction shifts to the right to consume the added CO_{2}.
d) No change. Removing half of the initial CaCO_{3} will have no effect on the amount of CaCO_{3} formed, because CaCO_{3} is a solid.
a) $Q_{\mathrm{c}}=\frac{[\mathrm{XY}]^{2}}{\left[\mathrm{X}_{2}\right]\left[\mathrm{Y}_{2}\right]}$
b) Scene A: $Q_{c}=\frac{[0]^{2}}{[0.4][0.4]}=\mathbf{0}$

Scene B: $Q_{\mathrm{c}}=\frac{[0.4]^{2}}{[0.2][0.2]}=4$
Scenes C-E: $Q_{c}=\frac{[0.6]^{2}}{[0.1][0.1]}=36=\mathbf{4 \times 1 0} \mathbf{1}^{\mathbf{1}}$
c) Time is progressing to the right. Frame A must be the earliest time.
d) $K=4 \times 10^{1}$
e) Scene B. At higher temperatures, the reaction shifts to the left (forming more X_{2} and Y_{2}).
f) None. Volume (pressure) has no effect on the position of the equilibrium since there are two moles of gas on each side.
17.81 Plan: Use the balanced equation to write an equilibrium expression and to define x. Set up a reaction table, substitute into the K_{c} expression, and solve for x . Once the total concentration of the gases at equilibrium is known, the pressure can be found with $P V=n R T$.
Solution:

Concentration (M)	$\mathrm{NH}_{2} \mathrm{COONH}_{4}(s)$	\leftrightarrows	$2 \mathrm{NH}_{3}(g)$	+	$\mathrm{CO}_{2}(g)$
Initial	7.80 g		0	0	
Change	-	+2 x	+x		
Equilibrium	-		2 x	x	

The solid is irrelevant (as long as some is present) and is not included in the K_{c} expression.
$K_{\mathrm{c}}=\left[\mathrm{NH}_{3}\right]^{2}\left[\mathrm{CO}_{2}\right]$
$K_{\mathrm{c}}=1.58 \times 10^{-8}=(2 \mathrm{x})^{2}(\mathrm{x})$
$\mathrm{x}=1.580759 \mathrm{x} 10^{-3} \mathrm{M}$
Total concentration of gases $=2 \mathrm{x}+\mathrm{x}=2\left(1.580759 \times 10^{-3} M\right)+1.580759 \times 10^{-3} M=4.742277 \times 10^{-3} M$
To find total pressure use the ideal gas equation: $P V=n R T$

$$
\begin{aligned}
& P=\frac{n R T}{V}=\left(\frac{n}{V}\right) R T=M R T \\
& P=\left(4.742277 \times 10^{-3} M\right)(0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{~K})(273+250 .) \mathrm{K}=0.203625=\mathbf{0 . 2 0 4} \mathbf{~ a t m}
\end{aligned}
$$

17.82 a) (1) $2 \mathrm{Ni}_{3} \mathrm{~S}_{2}(s)+7 \mathrm{O}_{2}(g) \leftrightarrows 6 \mathrm{NiO}(s)+4 \mathrm{SO}_{2}(g)$
(2) $\quad 6 \mathrm{NiO}(\mathrm{s})+6 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrows 6 \mathrm{Ni}(\mathrm{s})+6 \mathrm{H}_{2} \mathrm{O}(g)$
$(3) \quad 6 \mathrm{Ni}(\mathrm{s})+24 \mathrm{CO}(\mathrm{g}) \leftrightarrows 6 \mathrm{Ni}(\mathrm{CO})_{4}(\mathrm{~g})$
Overall: $2 \mathrm{Ni}_{3} \mathrm{~S}_{2}(\mathrm{~s})+7 \mathrm{O}_{2}(g)+6 \mathrm{H}_{2}(g)+24 \mathrm{CO}(g) \leftrightarrows 4 \mathrm{SO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)+6 \mathrm{Ni}(\mathrm{CO})_{4}(g)$
b) As always, the solid is not included in the Q expression.

$$
\begin{aligned}
& Q_{\mathrm{c}(\text { overall })}=\frac{\left[\mathrm{SO}_{2}\right]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]^{6}}{\left[\mathrm{O}_{2}\right]^{7}\left[\mathrm{H}_{2}\right]^{6}[\mathrm{CO}]^{24}} \\
& Q_{1} \times Q_{2} \times Q_{3}=\frac{\left[\mathrm{SO}_{2}\right]^{4}}{\left[\mathrm{O}_{2}\right]^{7}} \times \frac{\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}}{\left[\mathrm{H}_{2}\right]^{6}} \times \frac{\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]^{6}}{[\mathrm{CO}]^{24}}=\frac{\left[\mathrm{SO}_{2}\right]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]^{6}}{\left[\mathrm{O}_{2}\right]^{7}\left[\mathrm{H}_{2}\right]^{6}[\mathrm{CO}]^{24}}
\end{aligned}
$$

17.83 a) Since the volume is 1.00 L , the molarity equals the number of moles present.

c) K_{c} in a) is the square of K_{c} in b). The balanced equations are different; therefore, the values of K_{c} are different.
17.84 Plan: Write the equilibrium expression. You are given a value of K_{c} but the amounts of reactant and product are given in units of pressure. Convert K_{c} to K_{p} and use the equilibrium pressures of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ and $\mathrm{H}_{2} \mathrm{O}$ to obtain the equilibrium pressure of $\mathrm{C}_{2} \mathrm{H}_{4}$. An increase in temperature (addition of heat) causes a shift in the equilibrium away from the side of the reaction with heat, while a decrease in temperature (removal of heat) causes a shift in the equilibrium towards the side with heat. Increasing the volume of the container (pressure decreases) results in a shift in the direction that forms more moles of gas, while decreasing the container volume (pressure increases) results in a shift in the direction that forms fewer moles of gas. The van't Hoff equation shows how the equilibrium constant is affected by a change in temperature. Substitute the given variables into the equation and solve for K at 450 . K.
Solution:
a) $K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n}$
$\Delta n=$ moles gaseous products - moles gaseous reactants $=1-2=-1$ (one mol of product, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, and two mol of reactants, $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{O}$)
$K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{-1}=\left(9 \times 10^{3}\right)[(0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K})(600 . \mathrm{K})]^{-1}=1.82704 \times 10^{2}$
Substitute the given values into the equilibrium expression and solve for $P_{\mathrm{C}_{2} \mathrm{H}_{4}}$.

$$
\begin{aligned}
& K_{\mathrm{p}}=\frac{P_{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}}{P_{\mathrm{C}_{2} \mathrm{H}_{4}} P_{\mathrm{H}_{2} \mathrm{O}}}=\frac{200 .}{\mathrm{P}_{\mathrm{C}_{2} \mathrm{H}_{4}}(400 .)}=1.8270 \times 10^{2} \\
& P_{\mathrm{C}_{2} \mathrm{H}_{4}}=2.7367 \times 10^{-3}=\mathbf{3 x 1 0}^{-3} \mathbf{a t m}
\end{aligned}
$$

b) Since $\Delta H_{\mathrm{rxn}}^{\circ}$ is negative, the reaction is exothermic and heat is written as a product. To shift the reaction towards the right to yield more ethanol, heat must be removed. A low temperature favors an exothermic reaction. The forward direction, towards the production of ethanol, produces the smaller number of moles of gas and is favored by high pressure.

$$
\begin{array}{rc}
\text { c) } K_{1}= & 9 \times 10^{3} \quad T_{1}=600 . \mathrm{K} \quad \Delta H_{\mathrm{rxn}}^{\circ}=(-47.8 \mathrm{~kJ})\left(\frac{10^{3} \mathrm{~J}}{1 \mathrm{~kJ}}\right)=-4.78 \times 10^{4} \mathrm{~J} \\
K_{2}=? & T_{2}=450 . \mathrm{K} \quad R=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K} \\
& \ln \frac{K_{2}}{K_{1}}=-\frac{\Delta H_{\mathrm{rxn}}^{\circ}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right) \\
& \ln \frac{K_{2}}{9 \times 10^{3}}=-\frac{-4.78 \times 10^{4} \mathrm{~J}}{8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}}\left(\frac{1}{450 . \mathrm{K}}-\frac{1}{600 . \mathrm{K}}\right) \\
& \ln \frac{K_{2}}{9 \times 10^{3}}=3.1940769
\end{array}
$$

$$
\begin{aligned}
& \frac{K_{2}}{9 \times 10^{3}}=24.38765 \\
& K_{2}=\left(9 \times 10^{3}\right)(24.38765)=2.1949 \times 10^{5}=\mathbf{2 \times 1 0} 0^{5}
\end{aligned}
$$

d) No, condensing the $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ would not increase the yield. Ethanol has a lower boiling point $\left(78.5^{\circ} \mathrm{C}\right)$ than water $\left(100^{\circ} \mathrm{C}\right)$. Decreasing the temperature to condense the ethanol would also condense the water, so moles of gas from each side of the reaction are removed. The direction of equilibrium (yield) is unaffected when there is no net change in the number of moles of gas.

$$
\begin{aligned}
& \begin{array}{l}
n / V=M=P / R T=\frac{(2.0 \mathrm{~atm})}{\left(0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)((273.2+25.0) \mathrm{K})}=0.0816919 \\
\\
\\
\text { Initial } \\
\text { Change } \\
\text { Equi: }
\end{array} \\
& K_{\mathrm{c}}=\frac{\left[\mathrm{H}_{2} \mathrm{O}\right][\mathrm{CO}]}{\left[\mathrm{H}_{2}\right]\left[\mathrm{CO}_{2}\right]}=0.534=\frac{[\mathrm{x}][\mathrm{x}]}{[0.0816919-\mathrm{x}][0.0816919-\mathrm{x}]}=\frac{[\mathrm{x}]^{2}}{[0.0816919-\mathrm{x}]^{2}} \\
& (0.534)^{1 / 2}=0.730753=\frac{[\mathrm{x}]}{[0.0816919-\mathrm{x}]} \\
& \mathrm{x}=0.03449 \mathrm{M} \\
& M \text { of } \mathrm{H}_{2} \text { at equilibrium }=0.0816919-\mathrm{x}=0.0816919-0.03449=0.0472019 \mathrm{~mol} / \mathrm{L} \\
& \text { Mass }(\mathrm{g}) \text { of } \mathrm{H}_{2}=(1.00 \mathrm{~L})\left(\frac{0.0472019 \mathrm{~mol}}{\mathrm{~L}}\right)\left(\frac{2.016 \mathrm{~g}}{1 \mathrm{~mol}}\right)=0.095159=\mathbf{0 . 0 9 5} \mathbf{g} \mathbf{H}_{2}
\end{aligned}
$$

17.86 To get the two equations to sum to the desired equation, the first equation must be reversed and doubled. This will result in squaring the reciprocal of its K_{c} value. The other equation does not need to be changed. Adding the two equations means the new K_{c} value will be the product of the individual K_{c} values.

$$
\begin{array}{ll}
2 \mathrm{NO}(g) \leftrightarrows \mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) & K_{1}=\left(K_{\mathrm{c}}\right)^{-2}=4.340 \times 10^{18}=K_{2} \\
\text { Overall: } 2 \mathrm{NO}_{2}(g) \leftrightarrows 2 \mathrm{NO}_{2}(g) \leftrightarrows \mathrm{N}_{2}(g)+2 \mathrm{O}_{2}(g) & K_{2}=K_{\mathrm{c}}=1.1 \times 10^{-5} \\
\text { (overall })=K_{1} K_{2}=4.774 \times 10^{13}=\mathbf{4 . 8 \times 1 0 ^ { 1 3 }} \boldsymbol{M}
\end{array}
$$

17.87 Plan: Write the equilibrium expression. You are given a value of K_{c} but the amounts of reactants and product are given in units of pressure. Convert K_{c} to K_{p} and use the equilibrium pressures of SO_{3} and O_{2} to obtain the equilibrium pressure of SO_{2}. For part b), set up a reaction table and solve for x. The equilibrium concentrations can then be used to find the K_{c} value at the higher temperature. The concentration of SO_{2} is converted to pressure using the ideal gas law, $P V=n R T$.
Solution:
a) $K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n}$
$\Delta n=$ moles gaseous products - moles gaseous reactants $=2-3=-1$ (two mol of product, SO_{3}, and three mol of reactants, $2 \mathrm{SO}_{2}+\mathrm{O}_{2}$)

$$
\begin{aligned}
& K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n}=K_{\mathrm{c}}(R T)^{-1}=\left(1.7 \times 10^{8}\right)[(0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{~K})(600 . \mathrm{K})]^{-1}=3.451 \times 10^{6} \\
& K_{\mathrm{p}}=\frac{P_{\mathrm{SO}_{3}}^{2}}{P_{\mathrm{SO}_{2}}^{2} P_{\mathrm{O}_{2}}}=\frac{(300 .)^{2}}{\mathrm{P}_{\mathrm{SO}_{2}}^{2}(100 .)}=3.451 \times 10^{6} \\
& P_{\mathrm{SO}_{2}}=0.016149=\mathbf{0 . 0 1 6} \mathbf{~ a t m}
\end{aligned}
$$

b) Create a reaction table that describes the reaction conditions. Since the volume is 1.0 L , the moles equals the molarity. Note the 2:1:2 mole ratio between $\mathrm{SO}_{2}: \mathrm{O}_{2}: \mathrm{SO}_{3}$.

Concentration (M)	$2 \mathrm{SO}_{2}(\mathrm{~g})$	+	$\mathrm{O}_{2}(\mathrm{~g})$	\leftrightarrows	$\mathrm{SHO}_{3}(\mathrm{~g})$
Initial	0.0040		0.0028	0	
Change	-2 x	-x	+2 x	(2:1:2 mole ratio)	
Equilibrium	$0.0040-2 \mathrm{x}$		$0.0028-\mathrm{x}$	$2 \mathrm{x}=0.0020$ (given)	
$\mathrm{X}=0.0010$, therefore:					

$$
\begin{aligned}
& {\left[\mathrm{SO}_{2}\right]=0.0040-2 \mathrm{x}=0.0040-2(0.0010)=0.0020 \mathrm{M}} \\
& {\left[\mathrm{O}_{2}\right]=0.0028-\mathrm{x}=0.0028-0.0010=0.0018 \mathrm{M}} \\
& {\left[\mathrm{SO}_{3}\right]=2(0.0010)=0.0020 \mathrm{M}}
\end{aligned}
$$

Substitute equilibrium concentrations into the equilibrium expression and solve for K_{c}.

$$
K_{\mathrm{c}}=\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]}=\frac{[0.0020]^{2}}{[0.0020]^{2}[0.0018]}=555.5556=\mathbf{5 . 6} \mathbf{x 1 0}{ }^{2}
$$

The pressure of SO_{2} is estimated using the concentration of SO_{2} and the ideal gas law (although the ideal gas law is not well behaved at high pressures and temperatures).

$$
\begin{aligned}
& P V=n R T \\
& P_{\mathrm{SO}_{2}}=\frac{n R T}{V}=\frac{(0.0020 \mathrm{~mol})\left(0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(1000 . \mathrm{K})}{(1.0 \mathrm{~L})}=0.1642=\mathbf{0 . 1 6} \mathbf{~ a t m}
\end{aligned}
$$

17.88 The original concentrations are: $(0.350 \mathrm{~mol} / 0.500 \mathrm{~L})=0.700 \mathrm{M}$ for CO and Cl_{2}.

(The 1.19039 value is not possible because $0.700-\mathrm{x}$ would be negative.)
$[\mathrm{CO}]=\left[\mathrm{Cl}_{2}\right]=0.700-\mathrm{x}=0.700-0.41162959=0.28837041=\mathbf{0 . 2 8 8} \mathbf{M}$
$\left[\mathrm{COCl}_{2}\right]=\mathrm{x}=0.41162959=\mathbf{0 . 4 1 2} \mathbf{~ M}$
17.89 Plan: Set up a reaction table to find the equilibrium amount of CaCO_{3} after the first equilibrium is established and then the equilibrium amount after the second equilibrium is established.
Solution:
The equilibrium pressure of $\mathrm{CO}_{2}=P_{\mathrm{CO}_{2}}=0.220 \mathrm{~atm}$.

	$\mathrm{CaCO}_{3}(\mathrm{~s})$	\leftrightarrows	$\mathrm{CaO}(\mathrm{s})$	+	$\mathrm{CO}_{2}(\mathrm{~g})$
Initial	0.100 mol		0.100 mol		0
Change	- x		- x		+x
Equilibrium	0.100 - x		$0.100-\mathrm{x}$		$\mathrm{x}=0.2$

The amount of calcium carbonate solid in the container at the first equilibrium equals the original amount, 0.100 mol , minus the amount reacted to form 0.220 atm of carbon dioxide. The moles of CaCO_{3} reacted is equal to the number of moles of carbon dioxide produced. Use the pressure of CO_{2} and the ideal gas equation to calculate the moles of CO_{2} produced:

$$
\begin{aligned}
& P V=n R T \\
& \text { Moles of } \mathrm{CO}_{2}=n=\frac{P V}{R T} \\
& n=\frac{(0.220 \mathrm{~atm})(10.0 \mathrm{~L})}{\left(0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(385 \mathrm{~K})}=0.0696015 \mathrm{~mol} \mathrm{CO}_{2}
\end{aligned}
$$

Moles of CaCO_{3} reacted $=$ moles of CO_{2} produced $=0.0696015 \mathrm{~mol}$
Moles of CaCO_{3} remaining $=$ initial moles - moles reacted $=0.100 \mathrm{~mol} \mathrm{CaCO}_{3}-0.0696015 \mathrm{~mol} \mathrm{CaCO}_{3}$

$$
=0.0304 \mathrm{~mol} \mathrm{CaCO}_{3} \text { at first equilibrium }
$$

As more carbon dioxide gas is added, the system returns to equilibrium by shifting to the left to convert the added carbon dioxide to calcium carbonate to maintain the partial pressure of carbon dioxide at $0.220 \mathrm{~atm}\left(K_{\mathrm{p}}\right)$. Convert the added 0.300 atm of CO_{2} to moles using the ideal gas equation. The moles of CO_{2} reacted equals the moles of CaCO_{3} formed.

$$
\begin{aligned}
& \text { Moles of } \mathrm{CO}_{2}=n=\frac{P V}{R T} \\
& n=\frac{(0.300 \mathrm{~atm})(10.0 \mathrm{~L})}{\left(0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(385 \mathrm{~K})}=0.09491 \mathrm{~mol} \mathrm{CO}
\end{aligned}
$$

Moles of CaCO_{3} produced $=$ moles of CO_{2} reacted $=0.09491 \mathrm{~mol} \mathrm{CaCO}_{3}$
Add the moles of CaCO_{3} formed in the second equilibrium to the moles of CaCO_{3} at the first equilibrium position.
Moles of $\mathrm{CaCO}_{3}=$ moles at first equilibrium + moles formed in second equilibrium

$$
=0.0304 \mathrm{~mol}+0.09491=0.12531 \mathrm{~mol} \mathrm{CaCO}_{3}
$$

Mass (g) of $\mathrm{CaCO}_{3}=\left(0.12531 \mathrm{~mol} \mathrm{CaCO}_{3}\right)\left(\frac{100.09 \mathrm{~g} \mathrm{CaCO}_{3}}{1 \mathrm{~mol} \mathrm{CaCO}_{3}}\right)=12.542=\mathbf{1 2 . 5} \mathbf{g ~ C a C O}$
17.90 a) $\mathrm{C}_{2} \mathrm{H}_{4}(g)+3 \mathrm{O}_{2}(g) \leftrightarrows 2 \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)$
b) $4 \mathrm{NO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(g) \leftrightarrows 4 \mathrm{NH}_{3}(g)+7 \mathrm{O}_{2}(g)$
17.91
$\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$
$\Delta H_{\mathrm{rxn}}^{\circ}=\Sigma m \Delta H_{\text {products }}^{\circ}-\Sigma n \Delta H_{\text {reactants }}^{\circ}$
$=\left\{1 \Delta H_{\mathrm{f}}^{\circ}\left[\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})\right]\right\}-\left\{1 \Delta H_{\mathrm{f}}^{\circ}\left[\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})\right]+1 \Delta H_{\mathrm{f}}^{\circ}\left[\mathrm{H}_{2}(\mathrm{~g})\right]\right\}$
$=[(1 \mathrm{~mol})(52.47 \mathrm{~kJ} / \mathrm{mol})]-[(1 \mathrm{~mol})(227 \mathrm{~kJ} / \mathrm{mol})+(1 \mathrm{~mol})(0.0 \mathrm{~kJ} / \mathrm{mol})]$
$=-174.53 \mathrm{~kJ}$
$\ln \frac{K_{300}}{K_{2000}}=-\frac{\Delta H_{\mathrm{rxn}}^{\circ}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$
$\ln \frac{K_{300}}{2.9 \times 10^{8}}=-\frac{(-174.53 \mathrm{~kJ} / \mathrm{mol})}{\left(8.314 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)}\left(\frac{1}{300 . \mathrm{K}}-\frac{1}{2000 . \mathrm{K}}\right)\left(\frac{10^{3} \mathrm{~J}}{1 \mathrm{~kJ}}\right)$
$\ln \frac{K_{300}}{2.9 \times 10^{8}}=59.478189$
$\frac{K_{300}}{2.9 \times 10^{8}}=6.77719 \times 10^{25}$
$K_{300}=\left(2.9 \times 10^{8}\right)\left(6.77719 \times 10^{25}\right)=1.9654 \times 10^{34}=\mathbf{2 . 0 \times 1 0} \mathbf{1 0}^{34}$
17.92
$\mathrm{M}_{2}(g)+\mathrm{N}_{2}(g) \leftrightarrows \quad 2 \mathrm{MN}(g)$
$K_{\mathrm{c}}=\frac{[\mathrm{MN}]^{2}}{\left[\mathrm{M}_{2}\right]\left[\mathrm{N}_{2}\right]}$
Scene A: Concentrations: $\left[\mathrm{M}_{2}\right]=\left[\mathrm{N}_{2}\right]=0.20 \mathrm{M} ;[\mathrm{MN}]=0.40 \mathrm{M}$
$K_{\mathrm{c}}=\frac{[0.40]^{2}}{[0.20][0.20]}=4.0$
Scene B:
$\begin{array}{lllll}\text { Concentration }(M) & \mathrm{M}_{2}(g) \\ \text { Initial } & 0.60 & \mathrm{~N}_{2}(g) & \leftrightarrows & 2 \mathrm{MN}(g) \\ & & 0.30 & & 0\end{array}$

Change	-x	-x	+2 x
Equilibrium	$0.60-\mathrm{x}$	$0.30-\mathrm{x}$	2 x

$K_{\mathrm{c}}=4.0=\frac{[2 \mathrm{x}]^{2}}{[0.60-\mathrm{x}][0.30-\mathrm{x}]}$
$4.0=\frac{4 \mathrm{x}^{2}}{0.18-0.90 \mathrm{x}+\mathrm{x}^{2}}$
$4 x^{2}=0.72-3.6 x+4 x^{2}$
$3.6 x=0.72$
$\mathrm{x}=0.20 \mathrm{M}$
$\left[\mathrm{M}_{2}\right]=0.60-\mathrm{x}=0.60-0.20=\mathbf{0 . 4 0} \mathbf{M}$
$\left[\mathrm{N}_{2}\right]=0.30-\mathrm{x}=0.30-0.20=\mathbf{0 . 1 0} \boldsymbol{M}$
$[\mathrm{MN}]=2 \mathrm{x}=2(0.20 \mathrm{M})=\mathbf{0 . 4 0} \mathbf{M}$
Plan: Use the balanced reaction to write the equilibrium expression. The equilibrium concentration of $\mathrm{S}_{2} \mathrm{~F}_{10}$ is used to write an expression for the equilibrium concentrations of SF_{4} and SF_{6}.
Solution:
$\mathrm{S}_{2} \mathrm{~F}_{10}(g) \leftrightarrows \mathrm{SF}_{4}(g)+\mathrm{SF}_{6}(g)$
The reaction is described by the following equilibrium expression:

$$
K_{\mathrm{c}}=\frac{\left[\mathrm{SF}_{4}\right]\left[\mathrm{SF}_{6}\right]}{\left[\mathrm{S}_{2} \mathrm{~F}_{10}\right]}
$$

At the first equilibrium, $\left[\mathrm{S}_{2} \mathrm{~F}_{10}\right]=0.50 \mathrm{M}$ and $\left[\mathrm{SF}_{4}\right]=\left[\mathrm{SF}_{6}\right]=\mathrm{x}\left(\left[\mathrm{SF}_{4}\right]:\left[\mathrm{SF}_{6}\right]=1: 1\right)$.

$$
\begin{aligned}
& K_{\mathrm{c}}=\frac{\left[\mathrm{SF}_{4}\right]\left[\mathrm{SF}_{6}\right]}{\left[\mathrm{S}_{2} \mathrm{~F}_{10}\right]}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.50]} \\
& \mathrm{x}^{2}=0.50 K_{\mathrm{c}} \\
& {\left[\mathrm{SF}_{4}\right]=\left[\mathrm{SF}_{6}\right]=\mathrm{x}=\sqrt{0.50 K_{\mathrm{c}}}}
\end{aligned}
$$

At the second equilibrium, $\left[\mathrm{S}_{2} \mathrm{~F}_{10}\right]=2.5 \mathrm{M}$ and $\left[\mathrm{SF}_{4}\right]=\left[\mathrm{SF}_{6}\right]=\mathrm{x}$.

$$
\begin{aligned}
& K_{\mathrm{c}}=\frac{\left[\mathrm{SF}_{4}\right]\left[\mathrm{SF}_{6}\right]}{\left[\mathrm{S}_{2} \mathrm{~F}_{10}\right]}=\frac{[\mathrm{x}][\mathrm{x}]}{[2.5]} \\
& \mathrm{x}^{2}=2.5 K_{\mathrm{c}}
\end{aligned}
$$

$$
\left[\mathrm{SF}_{4}\right]=\left[\mathrm{SF}_{6}\right]=\mathrm{x}=\sqrt{2.5 K_{\mathrm{c}}}
$$

Thus, the concentrations of SF_{4} and SF_{6} increase by a factor of:

$$
\frac{\sqrt{2.5 K_{\mathrm{c}}}}{\sqrt{0.50 K_{\mathrm{c}}}}=\frac{\sqrt{2.5}}{\sqrt{0.50}}=2.236=2.2
$$

17.94 Calculate K_{c}.

$$
K_{\mathrm{c}}=\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2} \mathrm{O}\right]}=\frac{[0.40][0.10]}{[0.10][0.10]}=4.0
$$

Calculate new concentrations.
New $\mathrm{H}_{2}=0.10 \mathrm{M}+(0.60 \mathrm{~mol} / 2.0 \mathrm{~L})=0.40 \mathrm{M}$

Concentration (M)	$\mathrm{CO}(g)$	+	$\mathrm{H}_{2} \mathrm{O}(g)$	\leftrightarrows	$\mathrm{CO}_{2}(g)+$	$\mathrm{H}_{2}(g)$
Initial	0.10	0.10	0.40	0.40		
Change	+x	+x		-x	-x	
Equilibrium	$0.10+\mathrm{x}$	$0.10+\mathrm{x}$		$0.40-\mathrm{x}$	$0.40-\mathrm{x}$	

$$
K_{\mathrm{c}}=\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2} \mathrm{O}\right]}=\frac{[0.40-\mathrm{x}][0.40-\mathrm{x}]}{[0.10+\mathrm{x}][0.10+\mathrm{x}]}=\frac{[0.40-\mathrm{x}]^{2}}{[0.10+\mathrm{x}]^{2}}=4.0
$$

$$
\begin{aligned}
& \frac{[0.40-\mathrm{x}]}{[0.10+\mathrm{x}]}=2.0 \\
& \mathrm{x}=0.066667 \\
& {[\mathrm{CO}]=\left[\mathrm{H}_{2} \mathrm{O}\right]=0.10+\mathrm{x}=0.10+0.066667=0.166667=\mathbf{0 . 1 7} \mathbf{M}} \\
& {\left[\mathrm{CO}_{2}\right]=\left[\mathrm{H}_{2}\right]=0.40-\mathrm{x}=0.40-0.066667=0.333333=\mathbf{0 . 3 3} \mathbf{M}}
\end{aligned}
$$

17.95 Plan: Use the volume fraction of O_{2} and CO_{2} to find the partial pressure of each gas and substitute these pressures into the equilibrium expression to find the partial pressure of CO. Use $P V=n R T$ to convert the partial pressure of CO to moles per liter and then convert to pg / L.
Solution:
a) Calculate the partial pressures of oxygen and carbon dioxide because volumes are proportional to moles of gas, so volume fraction equals mole fraction. Assume that the amount of carbon monoxide gas is small relative to the other gases, so the total volume of gases equals $V_{\mathrm{CO}_{2}}+V_{\mathrm{O}_{2}}+V_{\mathrm{N}_{2}}=10.0+1.00+50.0=61.0$.

$$
\begin{aligned}
& P_{\mathrm{CO}_{2}}=\left(\frac{10.0 \mathrm{~mol} \mathrm{CO}_{2}}{61.0 \mathrm{~mol} \mathrm{gas}}\right)(4.0 \mathrm{~atm})=0.6557377 \mathrm{~atm} \\
& P_{\mathrm{O}_{2}}=\left(\frac{1.00 \mathrm{~mol} \mathrm{O}_{2}}{61.0 \mathrm{~mol} \mathrm{gas}}\right)(4.0 \mathrm{~atm})=0.06557377 \mathrm{~atm}
\end{aligned}
$$

Use the partial pressures and given K_{p} to find P_{CO}.

$$
\begin{aligned}
& 2 \mathrm{CO}_{2}(g) \leftrightarrows 2 \mathrm{CO}(g)+\mathrm{O}_{2}(g) \\
& K_{\mathrm{p}}=\frac{P_{\mathrm{CO}}^{2} P_{\mathrm{O}_{2}}}{P_{\mathrm{CO}_{2}}^{2}}=\frac{P_{\mathrm{CO}}^{2}(0.06557377)}{(0.6557377)^{2}}=1.4 \times 10^{-28} \\
& P_{\mathrm{CO}}=3.0299 \times 10^{-14}=\mathbf{3 . 0 \times 1 0}^{-14} \mathbf{~ a t m}
\end{aligned}
$$

b) $P V=n R T$

$$
\frac{n_{\mathrm{CO}}}{V}=\frac{P}{R T}=\frac{\left(3.0299 \times 10^{-14} \mathrm{~atm}\right)}{\left(0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(800 \mathrm{~K})}=4.61312 \times 10^{-16} \mathrm{~mol} / \mathrm{L}
$$

Concentration (pg/L) of $\mathrm{CO}=\left(\frac{4.61312 \times 10^{-16} \mathrm{~mol} \mathrm{CO}}{\mathrm{L}}\right)\left(\frac{28.01 \mathrm{~g} \mathrm{CO}}{1 \mathrm{~mol} \mathrm{CO}}\right)\left(\frac{1 \mathrm{pg}}{10^{-12} \mathrm{~g}}\right)=0.01292=\mathbf{0 . 0 1 3} \mathbf{~ p g ~ C O} / \mathrm{L}$
17.96 Although the yield is favored by low temperature, the rate of formation is not. In fact, ammonia forms so slowly at low temperatures that the process becomes uneconomical. In practice, a compromise is achieved that optimizes yield and rate (high pressure, continual removal of NH_{3}, increasing the temperature).
17.97 Plan: Write a reaction table given that $P_{\mathrm{CH}_{4}}$ (init) $=P_{\mathrm{CO}_{2}}$ (init) $=10.0$ atm, substitute equilibrium values into the equilibrium expression, and solve for $P_{\mathrm{H}_{2}}$.
Solution:

a) Pressure (atm)	$\mathrm{CH}_{4}(\mathrm{~g})$	+	$\mathrm{CO}_{2}(\mathrm{~g})$	\leftrightarrows	$2 \mathrm{CO}(\mathrm{g})$	+	$2 \mathrm{H}_{2}(\mathrm{~g})$
Initial	10.0		10.0		0		0
Change	-х		-X		+2x		+2x
Equilibrium	10.0 - x		10.0 - x		2x		2x

$$
\begin{aligned}
& K_{\mathrm{p}}=\frac{P_{\mathrm{CO}}^{2} P_{\mathrm{H}_{2}}^{2}}{P_{\mathrm{CH}_{4}} P_{\mathrm{CO}_{2}}}=\frac{(2 \mathrm{x})^{2}(2 \mathrm{x})^{2}}{(10.0-\mathrm{x})(10.0-\mathrm{x})}=\frac{(2 \mathrm{x})^{4}}{(10.0-\mathrm{x})^{2}}=3.548 \times 10^{6} \quad \text { (take square root of each side) } \\
& \frac{(2 \mathrm{x})^{2}}{(10.0-\mathrm{x})}=1.8836135 \times 10^{3}
\end{aligned}
$$

A quadratic is necessary:
$4 \mathrm{x}^{2}+\left(1.8836135 \times 10^{3} \mathrm{x}\right)-1.8836135 \times 10^{4}=0$

```
\(a=4 \quad b=1.8836135 \times 10^{3} \quad c=-1.8836135 \times 10^{4}\)
\(\mathrm{x}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}\)
\(x=\frac{-1.8836135 \times 10^{3} \pm \sqrt{\left(1.8836135 \times 10^{3}\right)^{2}-4(4)\left(-1.8836135 \times 10^{4}\right)}}{2(4)}\)
\(\mathrm{x}=9.796209\)
\(P_{\mathrm{H}_{2}}=2 \mathrm{x}=2(9.796209)=19.592419 \mathrm{~atm}\)
```

If the reaction proceeded entirely to completion, the partial pressure of H_{2} would be 20.0 atm (pressure is proportional to moles, and twice as many moles of H_{2} form for each mole of CH_{4} or CO_{2} that reacts).
The percent yield is $\frac{19.592418 \mathrm{~atm}}{20.0 \mathrm{~atm}}(100 \%)=97.96209=\mathbf{9 8 . 0} \%$.
b) Repeat the calculations for part a) with the new K_{p} value. The reaction table is the same.

$$
\begin{aligned}
& K_{\mathrm{p}}=\frac{P_{\mathrm{CO}}^{2} P_{\mathrm{H}_{2}}^{2}}{P_{\mathrm{CH}_{4}} P_{\mathrm{CO}_{2}}}=\frac{(2 \mathrm{x})^{2}(2 \mathrm{x})^{2}}{(10.0-\mathrm{x})(10.0-\mathrm{x})}=\frac{(2 \mathrm{x})^{4}}{(10.0-\mathrm{x})^{2}}=2.626 \times 10^{7} \\
& \frac{(2 \mathrm{x})^{2}}{(10.0-\mathrm{x})}=5.124451 \times 10^{3}
\end{aligned}
$$

A quadratic is needed:
$4 \mathrm{x}^{2}+\left(5.124451 \times 10^{3} \mathrm{x}\right)-5.124451 \times 10^{4}=0$
$\mathrm{a}=4 \quad \mathrm{~b}=5.124451 \times 10^{3} \quad \mathrm{c}=-5.124451 \times 10^{4}$
$x=\frac{-5.124451 \times 10^{3} \pm \sqrt{\left(5.124451 \times 10^{3}\right)^{2}-4(4)\left(-5.124451 \times 10^{4}\right)}}{2(4)}$
$\mathrm{x}=9.923144$
$P_{\mathrm{H}_{2}}=2 \mathrm{x}=2(9.923144)=19.84629 \mathrm{~atm}$
If the reaction proceeded entirely to completion, the partial pressure of H_{2} would be 20.0 atm (pressure is proportional to moles, and twice as many moles of H_{2} form for each mole of CH_{4} or CO_{2} that reacts).
The percent yield is $\frac{19.84629 \mathrm{~atm}}{20.0 \mathrm{~atm}}(100 \%)=99.23145=\mathbf{9 9 . 0} \%$.
c) van't Hoff equation:

$$
\begin{aligned}
& K_{1}=3.548 \times 10^{6} \quad T_{1}=1200 . \mathrm{K} \quad \Delta H_{\mathrm{rxn}}^{\circ}=? \\
& K_{2}=2.626 \times 10^{7} \quad T_{2}=1300 . \mathrm{K} \quad R=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K} \\
& \ln \frac{K_{2}}{K_{1}}=-\frac{\Delta H_{\mathrm{rxn}}^{\circ}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right) \\
& \ln \frac{2.626 \times 10^{7}}{3.548 \times 10^{6}}=-\frac{\Delta H_{\mathrm{rxn}}^{\circ}}{\left(8.314 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)}\left(\frac{1}{1200 . \mathrm{K}}-\frac{1}{1300 . \mathrm{K}}\right) \\
& 2.0016628=\Delta H_{\mathrm{rxn}}^{\circ}\left(7.710195 \times 10^{-6}\right) \\
& \Delta H_{\mathrm{rxn}}^{\circ}=2.0016628 / 7.710195 \times 10^{-6}=2.5961247 \times 10^{5}=\mathbf{2 . 6 0 \times 1 0} \mathbf{~ J} \mathbf{~ J} / \mathbf{m o l}
\end{aligned}
$$

(The subtraction of the $1 / T$ terms limits the answer to three significant figures.)
17.98
a) $\quad \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \leftrightarrows 3 \mathrm{CO}(\mathrm{g})+7 \mathrm{H}_{2}(\mathrm{~g})$
$K_{\mathrm{p}_{1}}^{\prime}=K_{\mathrm{p}}=8.175 \times 10^{15}$
$3 \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \leftrightarrows 3 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
$K_{\mathrm{p} 2}^{\prime}=\left(K_{\mathrm{p} 2}\right)^{3}=(0.6944)^{3}=0.33483368$
(Overall): $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \leftrightarrows 3 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2}(\mathrm{~g})$
b) $K_{\mathrm{p}(\text { overall })}=K_{\mathrm{p}_{1}}^{\prime} \times K_{\mathrm{p}_{2}}^{\prime}=\left(8.175 \times 10^{15}\right)(0.33483368)=2.737265 \times 10^{15}=\mathbf{2 . 7 3 7 \times 1 0 ^ { 1 5 }}$
c) $K_{\mathrm{p}}=\frac{\left(P_{\mathrm{CO}_{2}}\right)^{3}\left(P_{\mathrm{H}_{2}}\right)^{10}}{\left(P_{\mathrm{C}_{3} \mathrm{H}_{8}}\right)\left(P_{\mathrm{H}_{2} \mathrm{O}}\right)^{6}}$

The partial pressures of each reactant are proportional to the moles, and the limiting reactant may be determined from the partial pressures.
$P_{\mathrm{C}_{3} \mathrm{H}_{8}(\text { initial })}=(1.00 / 5.00) \times 5.0 \mathrm{~atm}=1.0 \mathrm{~atm}$
$P_{\mathrm{H}_{2} \mathrm{O} \text { (initial) }}=(4.00 / 5.00) \times 5.0 \mathrm{~atm}=4.0 \mathrm{~atm} \quad$ (limiting reactant)
$P_{\mathrm{CO}_{2} \text { (formed) }}=4.0 \mathrm{~atm} \mathrm{H}_{2} \mathrm{O} \mathrm{x}\left(3 \mathrm{~mol} \mathrm{CO} 2 / 6 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2} \mathrm{O}\right)=2.0 \mathrm{~atm}$
$P_{\left.\mathrm{H}_{2} \text { (formed) }\right)}=4.0 \mathrm{~atm} \mathrm{H} \mathrm{H}_{2} \mathrm{Ox}\left(10 \mathrm{~mol} \mathrm{H}_{2} / 6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}\right)=6.6667 \mathrm{~atm}$
$P_{\mathrm{C}_{3} \mathrm{H}_{8}(\text { remaining })}=1.0 \mathrm{~atm} \mathrm{C}_{3} \mathrm{H}_{8}-\left[4.0 \mathrm{~atm} \mathrm{H}_{2} \mathrm{O} \times\left(1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8} / 6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}\right)\right]=0.3333 \mathrm{~atm}$
$P_{\mathrm{H}_{2} O(\text { remaining })}=0.00 \mathrm{~atm}$ (limiting reactant)
$P_{\text {Total }}=P_{\mathrm{CO}_{2}}+P_{\mathrm{H}_{2}}+P_{\mathrm{C}_{3} \mathrm{H}_{8}}+P_{\mathrm{H}_{2} \mathrm{O}}=2.0 \mathrm{~atm}+6.6667 \mathrm{~atm}+0.3333 \mathrm{~atm}+0.00 \mathrm{~atm}=\mathbf{9 . 0} \mathbf{~ a t m}$
d) Percent $\mathrm{C}_{3} \mathrm{H}_{8 \text { (unreacted) }}=[0.3333 \mathrm{~atm} / 1.0 \mathrm{~atm}] \times 100 \%=33.33 \%=\mathbf{3 0 \%}$
17.99 Plan: Add the two reactions to obtain the overall reaction. Multiply the second equation by 2 to cancel the moles of CO produced in the first reaction. K_{p} for the second reaction is then $\left(K_{\mathrm{p}}\right)^{2} . K_{\mathrm{p}}$ for the overall reaction is equal to the product of the K_{p} values for the two individual reactions. Calculate K_{c} using $K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n}$. Solution:
a)

$$
\begin{array}{cl}
2 \mathrm{CH}_{4}(g)+\mathrm{O}_{2}(g) \leftrightarrows 2 \mathrm{CO}(g)+4 \mathrm{H}_{2}(g) & K_{\mathrm{p}}=9.34 \times 10^{28} \\
2 \mathrm{CO}(g)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \leftrightarrows 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) & K_{\mathrm{p}}=(1.374)^{2}=1.888
\end{array}
$$

$$
2 \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \leftrightarrows 2 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2}(\mathrm{~g})
$$

b) $K_{\mathrm{p}}=\left(9.34 \times 10^{28}\right)(1.888)=1.76339 \times 10^{29}=\mathbf{1 . 7 6 \times 1 0 ^ { 2 9 }}$
c) $\Delta n=$ moles gaseous products - moles gaseous reactants $=8-5=3$
(8 moles of product gas -5 moles of reactant gas)

$$
\begin{aligned}
& K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n} \\
& K_{\mathrm{c}}=\frac{K_{\mathrm{p}}}{(R T)^{\Delta n}}=\frac{1.76339 \times 10^{29}}{[(0.0821 \mathrm{~atm} \cdot \mathrm{~L} / \mathrm{mol} \cdot \mathrm{~K})(1000)]^{3}}=3.18654 \times 10^{23}=\mathbf{3 . 1 9 \times 1 0 ^ { 2 3 }}
\end{aligned}
$$

d) The initial total pressure is given as 30 . atm. To find the final pressure use the relationship between pressure and number of moles of gas: $n_{\text {initital }} / P_{\text {initial }}=n_{\text {final }} / P_{\text {final }}$
Total mol of gas initial $=2.0 \mathrm{~mol} \mathrm{CH}_{4}+1.0 \mathrm{~mol} \mathrm{O}_{2}+2.0 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}=5.0 \mathrm{~mol}$
Total mol of gas final $=2.0 \mathrm{~mol} \mathrm{CO}_{2}+6.0 \mathrm{~mol} \mathrm{H}_{2}=8.0 \mathrm{~mol} \quad$ (from mole ratios)
$P_{\text {final }}=(30 . \mathrm{atm}$ reactants $)\left(\frac{8 \mathrm{~mol} \text { products }}{5 \text { mol reactants }}\right)=48 \mathrm{~atm}$
17.100 Plan: Write an equilibrium expression. Use the balanced equation to define x and set up a reaction table, substitute into the equilibrium expression, and solve for x , from which the pressure of N or H is calculated. Convert $\log K_{\mathrm{p}}$ to K_{p}. Convert pressures to moles using the ideal gas law, $P V=n R T$. Convert moles to atoms using Avogadro's number.
Solution:

$$
\begin{aligned}
& \frac{(2 \mathrm{x})^{2}}{(200)}=7.94328 \times 10^{-44} \\
& 4 \mathrm{x}^{2}=1.588656 \times 10^{-41} \\
& \mathrm{x}=1.992897 \times 10^{-21} \\
& P_{\mathrm{N}}=2 \mathrm{x}=2\left(1.992897 \times 10^{-21}\right)=3.985795 \times 10^{-21}=4.0 \times 10^{-21} \mathbf{a t m}
\end{aligned}
$$

b) $\log K_{\mathrm{p}}=-17.30 ; \quad K_{\mathrm{p}}=10^{-17.30}=5.01187 \times 10^{-18}$

Pressure (atm)	$\mathrm{H}_{2}(g)$ Initial	600.	

Change	-x	+2 x
Equilibrium	$600-\mathrm{x}$	2 x

$$
\begin{aligned}
& K_{\mathrm{p}}=\frac{\left(P_{\mathrm{H}}\right)^{2}}{\left(P_{\mathrm{H}_{2}}\right)}=5.01187 \times 10^{-18} \\
& \frac{(2 \mathrm{x})^{2}}{(600 .-\mathrm{x})}=5.01187 \times 10^{-18} \quad \text { Assume } 600 .-\mathrm{x} \cong 600 \\
& \frac{(2 \mathrm{x})^{2}}{(600)}=5.01187 \times 10^{-18} \\
& 4 \mathrm{x}^{2}=3.007122 \times 10^{-15} \\
& \mathrm{x}=2.741862 \times 10^{-8} \\
& P_{\mathrm{H}}=2 \mathrm{x}=2\left(2.741862 \times 10^{-8}\right)=5.48372 \times 10^{-8}=\mathbf{5 . 5}^{2} \times 10^{-8}
\end{aligned}
$$

c) $P V=n R T$

Moles of N atoms $=\frac{P V}{R T}=\frac{\left(3.985795 \times 10^{-21} \mathrm{~atm}\right)(1.00 \mathrm{~L})}{\left(0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(1000 . \mathrm{K})}=4.85481 \times 10^{-15} \mathrm{~mol}$
Number of N atoms $=\left(4.85481 \times 10^{-23} \mathrm{~mol} \mathrm{~N}\right.$ atoms $)\left(\frac{6.022 \times 10^{23} \mathrm{~N} \text { atoms }}{1 \mathrm{~mol} \mathrm{~N} \text { atoms }}\right)=29.2356=29 \mathbf{N}$ atoms $/ \mathbf{L}$
Moles of H atoms $=\frac{P V}{R T}=\frac{\left(5.48372 \times 10^{-8} \mathrm{~atm}\right)(1.00 \mathrm{~L})}{\left(0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(1000 . \mathrm{K})}=6.67932 \times 10^{-10} \mathrm{~mol}$
Number of H atoms $=\left(6.67932 \times 10^{-10} \mathrm{~mol} \mathrm{H}\right.$ atoms $)\left(\frac{6.022 \times 10^{23} \mathrm{H} \text { atoms }}{1 \mathrm{~mol} \mathrm{H} \text { atoms }}\right)$

$$
=4.022 \times 10^{14}=4.0 \times 10^{14} \mathrm{H} \text { atoms } / \mathrm{L}
$$

d) The more reasonable step is $\mathbf{N}_{\mathbf{2}}(\boldsymbol{g})+\mathbf{H}(\boldsymbol{g}) \rightarrow \mathbf{N H}(\boldsymbol{g})+\mathbf{N}(\boldsymbol{g})$. With only twenty-nine N atoms in 1.0 L, the first reaction would produce virtually no $\mathrm{NH}(\mathrm{g})$ molecules. There are orders of magnitude more N_{2} molecules than N atoms, so the second reaction is the more reasonable step.
17.101 a) Scenes B and D represent equilibrium.
b) C, A, B = D
c) $[\mathrm{Y}]=(4$ spheres $)\left(\frac{0.025 \mathrm{~mol}}{1 \text { sphere }}\right)\left(\frac{1}{0.40 \mathrm{~L}}\right)=0.25 \mathrm{M}$
$[\mathrm{Z}]=(8$ spheres $)\left(\frac{0.025 \mathrm{~mol}}{1 \text { sphere }}\right)\left(\frac{1}{0.40 \mathrm{~L}}\right)=0.50 \mathrm{M}$
$K_{\mathrm{c}}=\frac{[\mathrm{Z}]^{2}}{[\mathrm{Y}]}=\frac{[0.50]^{2}}{[0.25]}=\mathbf{1 . 0}$
17.102 The K is very small, thus the reaction will shift to the right to reach equilibrium. To simplify the calculations, assume the equilibrium shifts entirely to the left, and then a little material reacts to reach equilibrium. Shifting entirely to the left gives $\left[\mathrm{H}_{2} \mathrm{~S}\right]=0.600$, and $\left[\mathrm{H}_{2}\right]=\left[\mathrm{S}_{2}\right]=0$.

	$2 \mathrm{H}_{2} \mathrm{~S}(g)$	\leftrightarrows	$2 \mathrm{H}_{2}(g)$	+	$\mathrm{S}_{2}(g)$
Initial	$0.600 M$		$0 M$		$0 M$
Change	-2 x		+2 x		+x
Equilibrium	$0.600-2 \mathrm{x}$		2 x		x

$$
\begin{aligned}
& K_{\mathrm{c}}=\frac{\left[\mathrm{H}_{2}\right]^{2}\left[\mathrm{~S}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]^{2}}=9.0 \times 10^{-8} \\
& \frac{[2 \mathrm{x}]^{2}[\mathrm{x}]}{[0.600-2 \mathrm{x}]^{2}}=9.0 \times 10^{-8} \quad \text { Assume } 2 \mathrm{x} \text { is small compared to } 0.600 \mathrm{M} . \\
& \frac{[2 \mathrm{x}]^{2}[\mathrm{x}]}{[0.600]^{2}}=9.0 \times 10^{-8} \\
& \mathrm{x}=2.008 \times 10^{-3} \quad \quad \text { (assumption justified) } \\
& {\left[\mathrm{H}_{2} \mathrm{~S}\right]=0.600-2 \mathrm{x}=0.600-2\left(2.008 \times 10^{-3}\right)=0.595984=\mathbf{0 . 5 9 6} \mathbf{M ~ H}_{\mathbf{2}} \mathbf{S}} \\
& {\left[\mathrm{H}_{2}\right]=2 \mathrm{x}=2\left(2.008 \times 10^{-3}\right)=4.016 \times 10^{-3}=\mathbf{4 . 0 \times 1 0 ^ { - 3 }} \mathbf{M} \mathbf{H}_{\mathbf{2}}} \\
& {\left[\mathrm{S}_{2}\right]=\mathrm{x}=2.008 \times 10^{-3}=\mathbf{2 . 0 \times 1 0 ^ { - 3 }} \mathbf{M} \mathbf{S}_{2}}
\end{aligned}
$$

17.103 Plan: Write an equilibrium expression. Use the balanced equation to define x and set up a reaction table, substitute into the equilibrium expression, and solve for x , from which the equilibrium pressures of the gases are calculated. Add the equilibrium pressures of the three gases to obtain the total pressure. Use the relationship $K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n}$ to find K_{c}.
Solution:

$$
\begin{aligned}
& \text { a) } \begin{array}{llccc}
\text { Pressure }(\mathrm{atm}) & \mathrm{N}_{2}(g) & + & \mathrm{O}_{2}(g) & \leftrightarrows \\
\text { Initial } & 0.780 & 0.210 & 0 \\
\text { Change } & -\mathrm{x} & -\mathrm{x} & +2 \mathrm{x}) \\
\text { Equilibrium } & 0.780-\mathrm{x} & 0.210-\mathrm{x} & 2 \mathrm{x} \\
K_{\mathrm{p}}=\frac{\left(P_{\mathrm{NO}}\right)^{2}}{\left(P_{\mathrm{N}_{2}}\right)\left(P_{\mathrm{O}_{2}}\right)}=4.35 \times 10^{-31} \\
\frac{(2 \mathrm{x})^{2}}{(0.780-\mathrm{x})(0.210-\mathrm{x})}=4.35 \times 10^{-31} \text { Assume } \mathrm{x} \text { is small because } K \text { is small. } \\
\frac{(2 \mathrm{x})^{2}}{(0.780)(0.210)}=4.35 \times 10^{-31} \\
\mathrm{x}=1.33466 \times 10^{-16}
\end{array}
\end{aligned}
$$

Based on the small amount of nitrogen monoxide formed, the assumption that the partial pressures of nitrogen and oxygen change to an insignificant degree holds.

$$
\begin{aligned}
& P_{\text {nitrogen }}(\text { equilibrium })=\left(0.780-1.33466 \times 10^{-16}\right) \mathrm{atm}=\mathbf{0 . 7 8 0} \mathbf{a t m ~} \mathbf{N}_{2} \\
& P_{\text {oxygen }}(\text { equilibrium })=\left(0.210-1.33466 \times 10^{-16}\right) \mathrm{atm}=\mathbf{0 . 2 1 0} \mathbf{a t m ~ O} \\
& \mathbf{O}_{2} \\
& P_{\text {NO }}(\text { equilibrium })=2\left(1.33466 \times 10^{-16}\right) \mathrm{atm}=2.66933 \times 10^{-16}=\mathbf{2 . 6 7} \times 10^{-16} \mathbf{a t m} \mathbf{N O}
\end{aligned}
$$

b) The total pressure is the sum of the three partial pressures:

$$
0.780 \mathrm{~atm}+0.210 \mathrm{~atm}+2.67 \mathrm{x} 10^{-16} \mathrm{~atm}=\mathbf{0 . 9 9 0} \mathbf{~ a t m}
$$

c) $K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n}$
$\Delta n=$ moles gaseous products - moles gaseous reactants $=2-2=0$
(two moles of product NO and two moles of reactants N_{2} and O_{2})
$K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{0}$
$K_{\mathrm{c}}=K_{\mathrm{p}}=4.35 \times 10^{-31}$ because there is no net increase or decrease in the number of moles of gas in the course of the reaction.
17.104

$$
\text { a) } \begin{aligned}
K_{\mathrm{p}}= & K_{\mathrm{c}}(R T)^{\Delta n} n=2-(2+1)=-1 \\
& K_{\mathrm{c}}=K_{\mathrm{p}} /(R T)^{\Delta n} \\
& K_{\mathrm{c}}=\frac{\left(1.3 \times 10^{4}\right)}{[(0.0821)(457)]^{-1}}=4.877561 \times 10^{5}=\mathbf{4 . 9 \times 1 0}
\end{aligned}
$$

b) $\Delta H_{\mathrm{rxn}}^{\circ}=\Sigma\left[\Delta H_{\mathrm{f}(\text { products })}^{\circ}\right]-\Sigma\left[\Delta H_{\mathrm{f}(\text { reactants })}^{\circ}\right]$

$$
\begin{aligned}
\Delta H_{\mathrm{rxn}}^{\circ} & =\left\{2 \Delta H_{\mathrm{f}}^{\circ}\left[\mathrm{NO}_{2}(\mathrm{~g})\right]\right\}-\left\{2 \Delta H_{\mathrm{f}}^{\circ}[\mathrm{NO}(\mathrm{~g})]+1 \Delta H_{\mathrm{f}}^{\circ}\left[\mathrm{O}_{2}(\mathrm{~g})\right]\right\} \\
& =[(2 \mathrm{~mol})(33.2 \mathrm{~kJ} / \mathrm{mol})]-[(2 \mathrm{~mol})(90.29 \mathrm{~kJ} / \mathrm{mol})+(1 \mathrm{~mol})(0.0 \mathrm{~kJ} / \mathrm{mol})] \\
& =-114.18=-\mathbf{1 1 4 . 2} \mathbf{~ k J}
\end{aligned}
$$

c) $\ln \frac{K_{2}}{K_{1}}=-\frac{\Delta H_{\mathrm{rxn}}^{\circ}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$
$\ln \frac{6.4 \times 10^{9}}{4.877561 \times 10^{5}}=-\frac{-114.18 \mathrm{~kJ}}{8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}}\left(\frac{1}{T_{2}}-\frac{1}{457 \mathrm{~K}}\right)\left(\frac{10^{3} \mathrm{~J}}{1 \mathrm{~kJ}}\right)$
$9.4819931=13,733\left(\frac{1}{T_{2}}-\frac{1}{457 \mathrm{~K}}\right)$
$T_{2}=347.389=3.5 \times 10^{2} \mathbf{K}$
17.105 Plan: Use the equation $K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n}$ to find K_{p}. The value of K_{c} for the formation of HI is the reciprocal of the K_{c} value for the decomposition of HI . Use the equation $\Delta H_{\mathrm{rxn}}^{\circ}=\Sigma\left[\Delta H_{\mathrm{f}(\text { products })}^{\circ}\right]-\Sigma\left[\Delta H_{\mathrm{f} \text { (reactants) }}^{\circ}\right]$ to find the value of $\Delta H_{\mathrm{rxn}}^{\circ}$. Use the van't Hoff equation as a second method of calculating $\Delta H_{\mathrm{rxn}}^{\circ}$.
Solution:
a) $K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n}$
$\Delta n=$ moles gaseous products - moles gaseous reactants $=2-2=0$
(2 mol product $\left(1 \mathrm{H}_{2}+1 \mathrm{I}_{2}\right)-2 \mathrm{~mol}$ reactant $(\mathrm{HI})=0$)
$K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{0}=1.26 \times 10^{-3}(R T)^{0}=1.26 \times 10^{-3}$
b) The equilibrium constant for the reverse reaction is the reciprocal of the equilibrium constant for the forward reaction:

$$
K_{\text {formation }}=\frac{1}{K_{\text {decomposition }}}=\frac{1}{1.26 \times 10^{-3}}=793.65=\mathbf{7 9 4}
$$

c) $\Delta H_{\mathrm{rxn}}^{\circ}=\Sigma\left[\Delta H_{\mathrm{f}(\text { products })}^{\circ}\right]-\Sigma\left[\Delta H_{\mathrm{f}(\text { reactants })}^{\circ}\right]$
$\Delta H_{\mathrm{rxn}}^{\circ}=\left\{1 \Delta H_{\mathrm{f}}^{\circ}\left[\mathrm{H}_{2}(\mathrm{~g})\right]+1 \Delta H_{\mathrm{f}}^{\circ}\left[\mathrm{I}_{2}(\mathrm{~g})\right]\right\}-\left\{2 \Delta H_{\mathrm{f}}^{\circ}[\mathrm{HI}(\mathrm{g})]\right\}$
$\Delta H_{\mathrm{rxn}}^{\circ}=[(1 \mathrm{~mol})(0 \mathrm{~kJ} / \mathrm{mol})+(1 \mathrm{~mol})(0 \mathrm{~kJ} / \mathrm{mol})]-[(2 \mathrm{~mol})(25.9 \mathrm{~kJ} / \mathrm{mol})]$
$\Delta H_{\mathrm{rxn}}^{\circ}=\mathbf{- 5 1 . 8} \mathbf{~ k J}$
d) $\ln \frac{K_{2}}{K_{1}}=-\frac{\Delta H_{\mathrm{rxn}}^{\circ}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$
$K_{1}=1.26 \times 10^{-3} ; K_{2}=2.0 \times 10^{-2}, T_{1}=298 \mathrm{~K} ; \quad T_{2}=729 \mathrm{~K}$
$\ln \frac{2.0 \times 10^{-2}}{1.26 \times 10^{-3}}=-\frac{\Delta H_{\mathrm{rxn}}^{\circ}}{8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}}\left(\frac{1}{729 \mathrm{~K}}-\frac{1}{298 \mathrm{~K}}\right)$
$2.764621=2.38629 \times 10^{-4} \Delta H_{\mathrm{rxn}}^{\circ}$

$$
\Delta H_{\mathrm{rxn}}^{\circ}=1.1585 \times 10^{4}=\mathbf{1 . 2 \times 1 0 ^ { 4 }} \mathbf{J} / \mathbf{m o l}
$$

$17.106 \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{COOH} \leftrightarrows \mathrm{CH}_{3} \mathrm{COOC}_{5} \mathrm{H}_{11}+\mathrm{H}_{2} \mathrm{O}$
Removing water should help to increase the yield of banana oil. Both isopentyl alcohol and acetic acid are more soluble in water than isopentyl acetate. Thus, removing water will increase the concentration of both reactants and cause a shift in equilibrium towards the products.
$17.107 \mathrm{Q}(g) \quad \leftrightarrows \quad \mathrm{R}(g) \quad K=\frac{[\mathrm{R}]}{[\mathrm{Q}]}$
For Scene A at equilibrium:
$K=\frac{[\mathrm{R}]}{[\mathrm{Q}]}=\frac{[2]}{[6]}=0.33$
For Scene B:

	$\mathrm{Q}(g)$	\leftrightarrows	$\mathrm{R}(g)$
Initial	10		2
Change	-x		+x
Equilibrium	$10-\mathrm{x}$		$2+\mathrm{x}$

$0.33=\frac{[2+\mathrm{x}]}{[10-\mathrm{x}]}$
$\mathrm{x}=0.977=1$
$\mathrm{Q}=10-\mathrm{x}=10-1=\mathbf{9} ; \mathrm{R}=2+\mathrm{x}=2+1=\mathbf{3}$
17.108
a) $K_{\mathrm{p}}=\left(P_{\mathrm{H}_{2} \mathrm{O}}\right)^{10}=4.08 \times 10^{-25}$
$P_{\mathrm{H}_{2} \mathrm{O}}=\sqrt[10]{4.08 \times 10^{-25}}=3.6397 \times 10^{-3}=3.64 \times 10^{-3} \mathbf{~ a t m}$
b) (1) Adding more $\mathrm{Na}_{2} \mathrm{SO}_{4}(s)$ will decrease the ratio of hydrated form/anhydrous form merely because you are increasing the value of the denominator, not because the equilibrium shifts.
(2) Reducing the container size will increase the pressure (concentration) of the water vapor, which will shift the equilibrium to the reactant side. The ratio of hydrated form/anhydrous form will increase.
(3) Adding more water vapor will increase the concentration of the water vapor, which will shift the equilibrium to the reactant side. The ratio of hydrated form/anhydrous form will increase.
(4) Adding N_{2} gas will not change the partial pressure of the water vapor, so the ratio of hydrated form/anhydrous form will not change.
17.109 Plan: Use the balanced equation to write an equilibrium expression. Find the initial concentration of each reactant from the given amounts and container volume, use the balanced equation to define x, and set up a reaction table. The equilibrium concentration of CO is known, so x can be calculated and used to find the other equilibrium concentrations. Substitute the equilibrium concentrations into the equilibrium expression to find K_{c}. Add the molarities of all of the gases at equilibrium, use $(M)(V)$ to find the total number of moles, and then use $P V=n R T$ to find the total pressure. To find $[\mathrm{CO}]_{\text {eq }}$ after the pressure is doubled, set up another reaction table in which the initial concentrations are equal to the final concentrations from part a) and add in the additional CO.
Solution:
The reaction is: $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \leftrightarrows \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$
a) Initial $[\mathrm{CO}]$ and initial $\left[\mathrm{H}_{2} \mathrm{O}\right]=0.100 \mathrm{~mol} / 20.00 \mathrm{~L}=0.00500 \mathrm{M}$.

	CO	$\mathrm{H}_{2} \mathrm{O}$	CO_{2}	H_{2}
Initial	0.00500 M	0.00500 M	0	0
Change	-x	-X	+x	+x
Equilibrium	$0.00500-\mathrm{x}$	$0.00500-\mathrm{x}$	X	X
$\begin{aligned} & {[\mathrm{CO}]_{\text {equilibrium }}=0.00500-\mathrm{x}=2.24 \times 10^{-3} \mathrm{M}=\left[\mathrm{H}_{2} \mathrm{O}\right] \quad \text { (given in problem) }} \\ & \mathrm{x}=0.00276 \mathrm{M}=\left[\mathrm{CO}_{2}\right]=\left[\mathrm{H}_{2}\right] \end{aligned}$				

$$
K_{\mathrm{c}}=\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2} \mathrm{O}\right]}=\frac{[0.00276][0.00276]}{[0.00224][0.00224]}=1.518176=\mathbf{1} .52
$$

b) $M_{\text {total }}=[\mathrm{CO}]+\left[\mathrm{H}_{2} \mathrm{O}\right]+\left[\mathrm{CO}_{2}\right]+\left[\mathrm{H}_{2}\right]=(0.00224 \mathrm{M})+(0.00224 \mathrm{M})+(0.00276 \mathrm{M})+(0.00276 \mathrm{M})$

$$
=0.01000 \mathrm{M}
$$

$n_{\text {total }}=\left(M_{\text {total }}\right)(V)=(0.01000 \mathrm{~mol} / \mathrm{L})(20.00 \mathrm{~L})=0.2000 \mathrm{~mol}$ total
$P V=n R T$
$P_{\text {total }}=n_{\text {total }} R T / V=\frac{(0.2000 \mathrm{~mol})\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)((273+900 .) \mathrm{K})}{(20.00 \mathrm{~L})}=0.9625638=\mathbf{0 . 9 6 2 6} \mathbf{~ a t m}$
c) Initially, an equal number of moles must be added $=\mathbf{0 . 2 0 0 0} \mathbf{~ m o l ~ C O}$
d) Set up a table with the initial concentrations equal to the final concentrations from part a), and then add $0.2000 \mathrm{~mol} \mathrm{CO} / 20.00 \mathrm{~L}=0.01000 \mathrm{M}$ to compensate for the added CO.

	CO	$\mathrm{H}_{2} \mathrm{O}$	CO_{2}	H_{2}
Initial	$0.00224 M$	$0.00224 M$	$0.00276 M$	$0.00276 M$
Added CO	$0.01000 M$			
Change	-x	-x	+x	+x
Equilibrium	$0.01224-\mathrm{x}$	$0.00224-\mathrm{x}$	$0.00276+\mathrm{x}$	$0.00276+\mathrm{x}$

$$
\begin{aligned}
& K_{\mathrm{c}}=\frac{\left[\mathrm{CO}_{2}\right]\left[\mathrm{H}_{2}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2} \mathrm{O}\right]}=\frac{[0.00276+\mathrm{x}][0.00276+\mathrm{x}]}{[0.01224-\mathrm{x}][0.00224-\mathrm{x}]}=1.518176 \\
& \frac{\left[7.6176 \times 10^{-6}+5.52 \times 10^{-3} \mathrm{x}+\mathrm{x}^{2}\right]}{2.74176 \times 10^{-5}-1.448 \times 10^{-2} \mathrm{x}+\mathrm{x}^{2}}=1.518176 \\
& 7.6176 \times 10^{-6}+5.52 \times 10^{-3} \mathrm{x}+\mathrm{x}^{2}=(1.518176)\left(2.74176 \times 10^{-5}-1.448 \times 10^{-2} \mathrm{x}+\mathrm{x}^{2}\right) \\
& 7.6176 \times 10^{-6}+5.52 \times 10^{-3} \mathrm{x}+\mathrm{x}^{2}=4.162474 \times 10^{-5}-0.021983 \mathrm{x}+1.518176 \mathrm{x}^{2} \\
& 0.518176 \mathrm{x}^{2}-0.027503 \mathrm{x}+3.400714 \times 10^{-5}=0 \\
& \mathrm{a}=0.518176 \quad \mathrm{~b}=-0.027503 \quad \mathrm{c}=3.400714 \times 10^{-5} \\
& \mathrm{x}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}} \\
& \mathrm{x}=\frac{-(-0.027503) \pm \sqrt{(-0.027503)^{2}-4(0.518176)\left(3.400714 \times 10^{-5}\right)}}{2(0.518176)} \\
& \mathrm{x}=1.31277 \times 10^{-3} \\
& {[\mathrm{CO}]=0.01224-\mathrm{x}=0.01224-\left(1.31277 \times 10^{-3}\right)=0.01092723=\mathbf{0 . 0 1 0 9 3} \mathbf{M}}
\end{aligned}
$$

17.110 a) At point A the sign of ΔH° is negative for the reaction graphite \rightarrow diamond. An increase in temperature at constant pressure will cause the formation of more graphite. Therefore, the equation must look like this: graphite \rightarrow diamond + heat, and adding heat shifts the equilibrium to the reactant side.
b) Diamond is denser than graphite. The slope of the diamond-graphite line is positive. An increase in pressure favors the formation of diamond.

