MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1)	Consider	the	following	reaction:
----	----------	-----	-----------	-----------

$$3A \rightarrow 2B$$

The average rate of appearance of B is given by $\Delta[B]/\Delta t$. Comparing the rate of appearance of B and the rate of disappearance of A, we get $\Delta[B]/\Delta t = \sum_{x \in A[A]/\Delta t} x$ ($\Delta[A]/\Delta t$).

- A) -2/3
- B) -3/2
- C) + 2/3
- D) +3/2
- E) +1

2) A burning splint will burn more vigorously in pure oxygen than in air because

- A) nitrogen is a reactant in combustion and its low concentration in pure oxygen catalyzes the combustion.
 - B) oxygen is a reactant in combustion and the concentration of oxygen is higher in pure oxygen than it is in air.
 - C) oxygen is a product of combustion.
- D) nitrogen is a product of combustion and the system reaches equilibrium at a lower temperature.
- E) oxygen is a catalyst for combustion.
- 3) Of the following, all are valid units for a reaction rate except ______
 - A) mol/L
- B) M/s
- C) mol/hr
- D) mol/L-hr
- E) g/s

A flask is charged with 0.124 mol of A and allowed to react to form B according to the reaction $A(g) \rightarrow B(g)$. The following data are obtained for [A] as the reaction proceeds:

Time (s)	1	10	20	30	40
Moles of A	0.124	0.110	0.088	0.073	0.054

- 4) The average rate of disappearance of A between 10 s and 20 s is _____ mol/s.
 - A) 1.1×10^{-3}
- B) 4.4×10^{-3}
- C) 454
- D) 9.90×10^{-3}
- E) 2.2×10^{-3}

The peroxydisulfate ion $(S_2O_8^{2-})$ reacts with the iodide ion in aqueous solution via the reaction:

$$S_2O_8^{2-}(aq) + 3I^- \rightarrow 2SO_4(aq) + I3^-(aq)$$

An aqueous solution containing 0.050 M of $S_2O_8^{2-}$ ion and 0.072 M of I^- is prepared, and the progress of the reaction followed by measuring $[I^-]$. The data obtained is given in the table below.

Time (s)	0	400	800	1200	1600
$[I^-](M)$	0.072	0.057	0.046	0.037	0.029

- 5) The concentration of $\rm S_2O_8{}^{2-}$ remaining at 800 s is _____ M.
 - A) 0.015
- B) 0.041
- C) 0.076
- D) 4.00×10^{-3}
- E) 0.046
- 6) Of the units below, _____ are appropriate for a first-order reaction rate constant.
 - A) L mol $^{-1}$ s $^{-1}$
 - B) s-1
- C) M-1 s-1
- D) mol/L
- $E) M s^{-1}$

7) If the rate law for the reaction

$$2A + 3B \rightarrow products$$

is first order in A and second order in B, then the rate law is rate = ___

- A) $k[A]^2[B]^3$
- B) $k[A]^2[B]^2$
- C) k[A][B]
- D) $k[A]^{2}[B]$

E) $k[A][B]^2$

8) The kinetics of the reaction below were studied and it was determined that the reaction rate increased by a factor of 9 when the concentration of B was tripled. The reaction is _____ order in B.

$$A + B \rightarrow P$$

- A) zero
- B) first
- C) second
- D) third
- E) one-half

The data in the table below were obtained for the reaction:

$$2 \text{ ClO}_2 \text{ (aq)} + 2 \text{ OH}^- \text{ (aq)} \rightarrow \text{ ClO}_3^- \text{ (aq)} + \text{ ClO}_2^- \text{ (aq)} + \text{ H}_2\text{O (1)}$$

		Initial Rate
$[ClO_2]$ (M)	[OH-] (M)	(M/s)
0.060	0.030	0.0248
0.020	0.030	0.00276
0.020	0.090	0.00828
	0.060 0.020	[ClO ₂] (M) [OH-] (M) 0.060 0.030 0.020 0.030

- 9) What is the order of the reaction with respect to ClO₂?
 - A) 4
- B) 1
- C) 0
- D) 2
- E) 3

- 10) What is the order of the reaction with respect to OH⁻?
 - A) 0
- B) 1
- C) 2
- D) 3
- E) 4

- 11) What is the overall order of the reaction?
 - A) 0
- B) 1
- C) 4
- D) 3
- E) 2

- 12) What is the magnitude of the rate constant for the reaction?
 - A) 115
- B) 1.15 x 10⁴
- C) 713
- D) 4.6
- E) 230

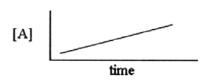
- 13) For a first-order reaction, a plot of ______ versus _____ is linear.
 - A) ln [A]_t, t
- B) $\frac{1}{[A]_t}$, t C) In $[A]_t$, $\frac{1}{t}$
- D) [A]_t, t
- E) t, $\frac{1}{[A]_t}$

14)	The rate	law for	a reaction	is
- -/	THE THE	14 11 101	a reaction	10

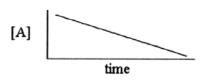
rate =
$$k [A][B]^2$$

Which one of the following statements is false?

- A) If [B] is doubled, the reaction rate will increase by a factor of 4.
- B) The reaction is second order in B.
- C) The reaction is first order in A.
- D) *k* is the reaction rate constant
- E) The reaction is second order overall.
- 15) The half-life of a first-order reaction _____.
 - A) is constant
 - B) is the time necessary for the reactant concentration to drop to half its original value
 - C) can be calculated from the reaction rate constant
 - D) does not depend on the initial reactant concentration
 - E) All of the above are correct.
- 16) The reaction

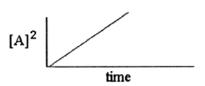

$$CH_3-N\equiv C \rightarrow CH_3-C\equiv N$$

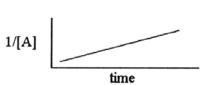
is a first-order reaction. At 230.3°C, $k = 6.29 \times 10^{-4} \text{ s}^{-1}$. If [CH₃-N \equiv C] is 1.00 x 10⁻³ initially, [CH₃-N \equiv C] is _____ after 1.000 x 10³ s.


- A) 4.27 x 10⁻³
- B) 2.34 x 10⁻⁴
- C) 5.33 x 10-4
- D) 1.88 x 10⁻³
- E) 1.00 x 10-6

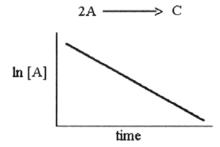
17) Which one of the following graphs shows the correct relationship between concentration and time for a reaction that is second order in [A]?


A)


B)


C)

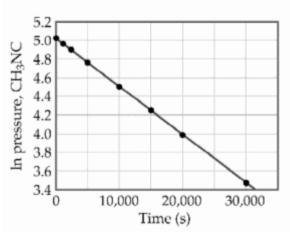
D)



E)

- 18) A first-order reaction has a rate constant of $0.33 \, \text{min}^{-1}$. It takes _____ min for the reactant concentration to decrease from $0.13 \, \text{M}$ to $0.088 \, \text{M}$.
 - A) 1.2
- B) 1.4
- C) 0.13
- D) 0.85
- E) 0.51
- 19) The rate constant for a second–order reaction is $0.13~M^{-1}s^{-1}$. If the initial concentration of reactant is 0.26~mol/L, it takes ______ s for the concentration to decrease to 0.13~mol/L.
 - A) 1.0
- B) 4.4×10^{-3}
- C) 0.017
- D) 0.50
- E) 30

20) The graph shown below depicts the relationship between concentration and time for the following chemical reaction.



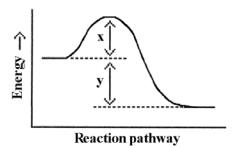
The slope of this line is equal to

- A) -k
- B) -1/k
- C) k
- D) $ln[A]_0$
- E) 1/k
- 21) The rate constant of a first-order process that has a half-life of 225 s is $_________ s^{-1}$.
 - A) 3.08×10^{-3}
- B) 12.5
- C) 1.25
- D) 4.44 x 10⁻³
- E) 0.693
- 22) At elevated temperatures, methylisonitrile (CH₃NC) isomerizes to acetonitrile (CH₃CN):

$$CH_3NC(g) \rightarrow CH_33CN(g)$$

The reaction is first order in methylisonitrile. The attached graph shows data for the reaction obtained at 198.9° C.

The rate constant for the reaction is ____


- A) -5.2×10^{-5}
- B) $+1.9 \times 10^4$
- C) +6.2
- D) -1.9×10^4
- E) $+5.2 \times 10^{-5}$
- 23) The decomposition of N₂O₅ in solution in carbon tetrachloride proceeds via the reaction

$$2N_2O_5 (soln) \rightarrow 4NO_2 (soln) + O_2 (soln)$$

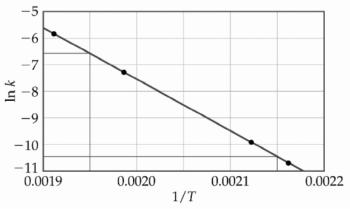
The reaction is first order and has a rate constant of $4.82 \times 10^{-3} \text{ s}^{-1}$ at 64°C . The rate law for the reaction is rate

- A) $k \frac{[N_2O_5]^2}{[NO_2]^4 [O_2]}$ B) $k[N_2O_5]^2$ C) $k[N_2O_5]$
- D) 2k[N₂O₅]
- E) $k \frac{[NO_2]^4 [O_2]}{[N_2O_5]^2}$

- 24) The rate of a reaction depends on _____.
 - A) collision frequency
 - B) collision orientation
 - C) collision energy
 - D) all of the above
 - E) none of the above
- 25) Which energy difference in the energy profile below corresponds to the activation energy for the forward reaction?

- A) x
- В) у
- C) x + y
- D) y x
- E) x y
- 26) In the energy profile of a reaction, the species that exists at the maximum on the curve is called the _____
 - A) product
 - B) enthalpy of reaction
 - C) atomic state
 - D) activated complex
 - E) activation energy
- 27) In the Arrhenius equation,

$$k = Ae^{-Ea/RT}$$


_____is the frequency factor.

- A) k
- B) A
- C) e
- D) R
- E) E_a

28) At elevated temperatures, methylisonitrile (CH3NC) isomerizes to acetonitrile (CH3CN):

$$CH_3NC(g) \rightarrow CH_3CN(g)$$

The dependence of the rate constant on temperature is studied and the graph below is prepared from the results.

The energy of activation of this reaction is _____kJ/mol.

A)
$$4.4 \times 10^{-7}$$

B)
$$1.9 \times 10^4$$

C)
$$1.6 \times 10^{5}$$

E)
$$4.4 \times 10^{-4}$$

29) The mechanism for formation of the product X is:

$$A + B \rightarrow C + D$$
 (slow)
 $B + D \rightarrow X$ (fast)

The intermediate reactant in the reaction is ______.

A) A

30) For the elementary reaction

$$NO_3 + CO \rightarrow NO_2 + CO_2$$

the molecularity of the reaction is ______, and the rate law is rate = _____.

- A) 4, k[NO₃][CO][NO₂][CO₂]
- B) 2, k[NO₃][CO]/[NO₂][CO₂]
- C) 4, k[NO₂][CO₂]/[NO₃][CO]
- D) 2, k[NO₂][CO₂]
- E) 2, k[NO₃][CO]

31) Of the following, _____ will lower the activation energy for a reaction.

- A) increasing the concentrations of reactants
- B) adding a catalyst for the reaction
- C) raising the temperature of the reaction
- D) removing products as the reaction proceeds
- E) increasing the pressure

32) The rate law of the overall reaction

$$A + B \rightarrow C$$

is rate = $k[A]^2$. Which of the following will <u>not</u> increase the rate of the reaction?

- A) increasing the concentration of reactant A
- B) increasing the temperature of the reaction
- C) increasing the concentration of reactant B
- D) adding a catalyst for the reaction
- E) All of these will increase the rate.
- 33) A particular first–order reaction has a rate constant of $1.35 \times 10^2 \, \mathrm{s}^{-1}$ at 25°C. What is the magnitude of k at 75°C if $E_a = 85.6 \, \mathrm{kJ/mol}$?
 - A) 670
- B) 3.47×10^4
- C) 3.85×10^6
- D) 1.93×10^4
- E) 1.36×10^2

Answer Key

Testname: CH_12_PRAC_TEST_KINETICS.TST

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

- 1) C ID: chem9b 14.1-1
- 2) B ID: chem9b 14.1-2
- 3) A ID: chem9b 14.1-3
- 4) E ID: chem9b 14.1-9
- 5) B ID: chem9b 14.1-19
- 6) B ID: chem9b 14.1-24
- 7) E ID: chem9b 14.1-26
- 8) C ID: chem9b 14.1-28
- 9) D ID: chem9b 14.1-37
- 10) B ID: chem9b 14.1-38
- 11) D ID: chem9b 14.1-39
- 12) E ID: chem9b 14.1-40
- 13) A ID: chem9b 14.1-41
- 14) E ID: chem9b 14.1-42
- 15) E ID: chem9b 14.1-45
- 16) C ID: chem9b 14.1-47
- 17) E ID: chem9b 14.1-49
- 18) A ID: chem9b 14.1-50
- 19) E ID: chem9b 14.1-52
- 20) A ID: chem9b 14.1-54
- 21) A ID: chem9b 14.1-60

Answer Key

Testname: CH_12_PRAC_TEST_KINETICS.TST

- 22) B ID: chem9b 14.1-65
- 23) C ID: chem9b 14.1-67
- 24) D ID: chem9b 14.1-69
- 25) A ID: chem9b 14.1-70
- 26) D ID: chem9b 14.1-71
- 27) B ID: chem9b 14.1-72
- 28) D ID: chem9b 14.1-74
- 29) D ID: chem9b 14.1-75
- 30) E ID: chem9b 14.1-77
- 31) B ID: chem9b 14.1-80
- 32) C ID: chem9b 14.1-81
- 33) D ID: chem9b 14.2-12

APChem Practice Test; Ch.12, Kinetics PAGE

Drate of disapperance of A > rate of appravance of B. For every 3As which react, 2Bs appear. Let's put the rates in moll-'s-1:

(2) B, collisions increase with higher concentration.

(3) A, rate involves time

$$.046 - .072 = \Delta[I] = -0.026 M$$

$$-0.026 \text{ mol } I^{-} \times \frac{1 \text{ mol } S_{2}^{2}}{L I^{-}} = \frac{-0.00867 \text{ mol } S_{2}^{0} S_{2}^{2}}{L S_{2}^{0} S_{2}^{2}}$$

example:

Toto =
$$K[A]$$
 \Rightarrow general | Toto law [AGE]

Two

Two

The security of reciprocal time

The security of the security

(9) exps \$\pm\$ | \$\pi\$ #Z;
$$\frac{.06}{.02} = 3$$
; $\frac{.0248}{.00276} \approx 9$
Thus, tripling [clas] caused rate to increase by 9.

 $3^{\times} = 9 \Rightarrow \times^2 2 \Rightarrow 2^{\text{ind}} \text{ order}$

wrt [clas]

(10) use
$$e \times pS \neq z + b \neq 3!$$
 $\frac{09}{03} = 3$; $\frac{.00826}{.00276} = 3$

$$3^{\times} = 3 \Rightarrow 1^{\text{stouder wnt Coff}}$$

 $k = 230 M^{-2} s^{-1}$

In[A] is t A (4) E (3rd order) $t_{1/2} = \frac{0.693}{L}$ 13) E 1 st onder half like ! $[CH_3 - N = C] = 1.00 \times 10^{-3}$ rxnis Istorder, so $\ln \left[\text{cH}_3 - N = C \right] = -\left(6.29 \times 10^{-4} \text{s}^{-1} \right) \left(1000 \text{s} \right) + \ln \left[1.00 \times 10^{-3} \right]$ In [cHz-N=c] = -6,29×10-1+ -6,90776 $\ln(a_3-v_2)=-7.537$ [cH3-N=c] = 5,33 ×10-4-M E to vs t In [A] = -kt + In [A]o IN [.088] = (0.33 min-1)(+) + In [0.13] $-0.390 = -0.33 \,\mathrm{min}^{-1} \pm$ 1.18 min = t 1.2 mm=t (A (19) k=0.13M-5-1, [+], = 0.76M, t=?, [+]=0./3M FAJ = Kt + FAT $\frac{1}{0.13M} = 0.13M + 1 + \frac{1}{0.26M} \Rightarrow \frac{1}{13} - \frac{1}{13} = (13)(+)$

NOTE; could have used half life formula here

(21)
$$t_{1/2} = \frac{0.693}{k} \Rightarrow k = \frac{0.693}{t_{1/2}} = \frac{0.693}{225s} = 0.00308s^{-1}$$

$$= \frac{3.08 \times 10^{-3} \text{s}^{-1}}{(A)}$$

$$\begin{array}{ll}
\sqrt{22} & \ln[A] = \begin{pmatrix} -k/t + \ln[A] \\ y = \begin{pmatrix} m/x + b \end{pmatrix}
\end{array}$$

$$\frac{\text{rise}}{\text{rvn}} = \text{slope} = \frac{3.5 - 5}{30,000 - 0}$$

$$M = -0.00005$$

$$(23) \text{ rate} = k[N_2 0_5]$$

$$M = -k = -0.00005$$

$$k = 0.00005$$

$$K = 5 \times 0^{-5}$$
I am pretty sure that
the answer key is wrong,
and this answer is correct.